x uchun yechish
x=\frac{\sqrt{5}}{3}\approx 0,745355992
x=-\frac{\sqrt{5}}{3}\approx -0,745355992
Grafik
Baham ko'rish
Klipbordga nusxa olish
12=\left(1-3x\right)^{2}+\left(1+3x\right)\left(1+3x\right)
\left(1-3x\right)^{2} hosil qilish uchun 1-3x va 1-3x ni ko'paytirish.
12=\left(1-3x\right)^{2}+\left(1+3x\right)^{2}
\left(1+3x\right)^{2} hosil qilish uchun 1+3x va 1+3x ni ko'paytirish.
12=1-6x+9x^{2}+\left(1+3x\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-3x\right)^{2} kengaytirilishi uchun ishlating.
12=1-6x+9x^{2}+1+6x+9x^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1+3x\right)^{2} kengaytirilishi uchun ishlating.
12=2-6x+9x^{2}+6x+9x^{2}
2 olish uchun 1 va 1'ni qo'shing.
12=2+9x^{2}+9x^{2}
0 ni olish uchun -6x va 6x ni birlashtirish.
12=2+18x^{2}
18x^{2} ni olish uchun 9x^{2} va 9x^{2} ni birlashtirish.
2+18x^{2}=12
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
18x^{2}=12-2
Ikkala tarafdan 2 ni ayirish.
18x^{2}=10
10 olish uchun 12 dan 2 ni ayirish.
x^{2}=\frac{10}{18}
Ikki tarafini 18 ga bo‘ling.
x^{2}=\frac{5}{9}
\frac{10}{18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\sqrt{5}}{3} x=-\frac{\sqrt{5}}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
12=\left(1-3x\right)^{2}+\left(1+3x\right)\left(1+3x\right)
\left(1-3x\right)^{2} hosil qilish uchun 1-3x va 1-3x ni ko'paytirish.
12=\left(1-3x\right)^{2}+\left(1+3x\right)^{2}
\left(1+3x\right)^{2} hosil qilish uchun 1+3x va 1+3x ni ko'paytirish.
12=1-6x+9x^{2}+\left(1+3x\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-3x\right)^{2} kengaytirilishi uchun ishlating.
12=1-6x+9x^{2}+1+6x+9x^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1+3x\right)^{2} kengaytirilishi uchun ishlating.
12=2-6x+9x^{2}+6x+9x^{2}
2 olish uchun 1 va 1'ni qo'shing.
12=2+9x^{2}+9x^{2}
0 ni olish uchun -6x va 6x ni birlashtirish.
12=2+18x^{2}
18x^{2} ni olish uchun 9x^{2} va 9x^{2} ni birlashtirish.
2+18x^{2}=12
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2+18x^{2}-12=0
Ikkala tarafdan 12 ni ayirish.
-10+18x^{2}=0
-10 olish uchun 2 dan 12 ni ayirish.
18x^{2}-10=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 18\left(-10\right)}}{2\times 18}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 18 ni a, 0 ni b va -10 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 18\left(-10\right)}}{2\times 18}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-72\left(-10\right)}}{2\times 18}
-4 ni 18 marotabaga ko'paytirish.
x=\frac{0±\sqrt{720}}{2\times 18}
-72 ni -10 marotabaga ko'paytirish.
x=\frac{0±12\sqrt{5}}{2\times 18}
720 ning kvadrat ildizini chiqarish.
x=\frac{0±12\sqrt{5}}{36}
2 ni 18 marotabaga ko'paytirish.
x=\frac{\sqrt{5}}{3}
x=\frac{0±12\sqrt{5}}{36} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{5}}{3}
x=\frac{0±12\sqrt{5}}{36} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{5}}{3} x=-\frac{\sqrt{5}}{3}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}