x uchun yechish (complex solution)
x=\frac{2\sqrt{4191}i}{75}+\frac{2}{25}\approx 0,08+1,726344886i
x=-\frac{2\sqrt{4191}i}{75}+\frac{2}{25}\approx 0,08-1,726344886i
Grafik
Baham ko'rish
Klipbordga nusxa olish
112=6x-\frac{75}{2}x^{2}
\frac{75}{2} hosil qilish uchun \frac{1}{2} va 75 ni ko'paytirish.
6x-\frac{75}{2}x^{2}=112
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
6x-\frac{75}{2}x^{2}-112=0
Ikkala tarafdan 112 ni ayirish.
-\frac{75}{2}x^{2}+6x-112=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\left(-\frac{75}{2}\right)\left(-112\right)}}{2\left(-\frac{75}{2}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{75}{2} ni a, 6 ni b va -112 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\left(-\frac{75}{2}\right)\left(-112\right)}}{2\left(-\frac{75}{2}\right)}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+150\left(-112\right)}}{2\left(-\frac{75}{2}\right)}
-4 ni -\frac{75}{2} marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36-16800}}{2\left(-\frac{75}{2}\right)}
150 ni -112 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{-16764}}{2\left(-\frac{75}{2}\right)}
36 ni -16800 ga qo'shish.
x=\frac{-6±2\sqrt{4191}i}{2\left(-\frac{75}{2}\right)}
-16764 ning kvadrat ildizini chiqarish.
x=\frac{-6±2\sqrt{4191}i}{-75}
2 ni -\frac{75}{2} marotabaga ko'paytirish.
x=\frac{-6+2\sqrt{4191}i}{-75}
x=\frac{-6±2\sqrt{4191}i}{-75} tenglamasini yeching, bunda ± musbat. -6 ni 2i\sqrt{4191} ga qo'shish.
x=-\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
-6+2i\sqrt{4191} ni -75 ga bo'lish.
x=\frac{-2\sqrt{4191}i-6}{-75}
x=\frac{-6±2\sqrt{4191}i}{-75} tenglamasini yeching, bunda ± manfiy. -6 dan 2i\sqrt{4191} ni ayirish.
x=\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
-6-2i\sqrt{4191} ni -75 ga bo'lish.
x=-\frac{2\sqrt{4191}i}{75}+\frac{2}{25} x=\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
Tenglama yechildi.
112=6x-\frac{75}{2}x^{2}
\frac{75}{2} hosil qilish uchun \frac{1}{2} va 75 ni ko'paytirish.
6x-\frac{75}{2}x^{2}=112
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{75}{2}x^{2}+6x=112
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-\frac{75}{2}x^{2}+6x}{-\frac{75}{2}}=\frac{112}{-\frac{75}{2}}
Tenglamaning ikki tarafini -\frac{75}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\frac{6}{-\frac{75}{2}}x=\frac{112}{-\frac{75}{2}}
-\frac{75}{2} ga bo'lish -\frac{75}{2} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4}{25}x=\frac{112}{-\frac{75}{2}}
6 ni -\frac{75}{2} ga bo'lish 6 ga k'paytirish -\frac{75}{2} ga qaytarish.
x^{2}-\frac{4}{25}x=-\frac{224}{75}
112 ni -\frac{75}{2} ga bo'lish 112 ga k'paytirish -\frac{75}{2} ga qaytarish.
x^{2}-\frac{4}{25}x+\left(-\frac{2}{25}\right)^{2}=-\frac{224}{75}+\left(-\frac{2}{25}\right)^{2}
-\frac{4}{25} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{25} olish uchun. Keyin, -\frac{2}{25} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4}{25}x+\frac{4}{625}=-\frac{224}{75}+\frac{4}{625}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{25} kvadratini chiqarish.
x^{2}-\frac{4}{25}x+\frac{4}{625}=-\frac{5588}{1875}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{224}{75} ni \frac{4}{625} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{2}{25}\right)^{2}=-\frac{5588}{1875}
x^{2}-\frac{4}{25}x+\frac{4}{625} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2}{25}\right)^{2}}=\sqrt{-\frac{5588}{1875}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2}{25}=\frac{2\sqrt{4191}i}{75} x-\frac{2}{25}=-\frac{2\sqrt{4191}i}{75}
Qisqartirish.
x=\frac{2\sqrt{4191}i}{75}+\frac{2}{25} x=-\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
\frac{2}{25} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}