Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1+20x-49x^{2}=11
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
1+20x-49x^{2}-11=0
Ikkala tarafdan 11 ni ayirish.
-10+20x-49x^{2}=0
-10 olish uchun 1 dan 11 ni ayirish.
-49x^{2}+20x-10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-20±\sqrt{20^{2}-4\left(-49\right)\left(-10\right)}}{2\left(-49\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -49 ni a, 20 ni b va -10 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\left(-49\right)\left(-10\right)}}{2\left(-49\right)}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400+196\left(-10\right)}}{2\left(-49\right)}
-4 ni -49 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{400-1960}}{2\left(-49\right)}
196 ni -10 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{-1560}}{2\left(-49\right)}
400 ni -1960 ga qo'shish.
x=\frac{-20±2\sqrt{390}i}{2\left(-49\right)}
-1560 ning kvadrat ildizini chiqarish.
x=\frac{-20±2\sqrt{390}i}{-98}
2 ni -49 marotabaga ko'paytirish.
x=\frac{-20+2\sqrt{390}i}{-98}
x=\frac{-20±2\sqrt{390}i}{-98} tenglamasini yeching, bunda ± musbat. -20 ni 2i\sqrt{390} ga qo'shish.
x=\frac{-\sqrt{390}i+10}{49}
-20+2i\sqrt{390} ni -98 ga bo'lish.
x=\frac{-2\sqrt{390}i-20}{-98}
x=\frac{-20±2\sqrt{390}i}{-98} tenglamasini yeching, bunda ± manfiy. -20 dan 2i\sqrt{390} ni ayirish.
x=\frac{10+\sqrt{390}i}{49}
-20-2i\sqrt{390} ni -98 ga bo'lish.
x=\frac{-\sqrt{390}i+10}{49} x=\frac{10+\sqrt{390}i}{49}
Tenglama yechildi.
1+20x-49x^{2}=11
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
20x-49x^{2}=11-1
Ikkala tarafdan 1 ni ayirish.
20x-49x^{2}=10
10 olish uchun 11 dan 1 ni ayirish.
-49x^{2}+20x=10
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-49x^{2}+20x}{-49}=\frac{10}{-49}
Ikki tarafini -49 ga bo‘ling.
x^{2}+\frac{20}{-49}x=\frac{10}{-49}
-49 ga bo'lish -49 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{20}{49}x=\frac{10}{-49}
20 ni -49 ga bo'lish.
x^{2}-\frac{20}{49}x=-\frac{10}{49}
10 ni -49 ga bo'lish.
x^{2}-\frac{20}{49}x+\left(-\frac{10}{49}\right)^{2}=-\frac{10}{49}+\left(-\frac{10}{49}\right)^{2}
-\frac{20}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{10}{49} olish uchun. Keyin, -\frac{10}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{20}{49}x+\frac{100}{2401}=-\frac{10}{49}+\frac{100}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{10}{49} kvadratini chiqarish.
x^{2}-\frac{20}{49}x+\frac{100}{2401}=-\frac{390}{2401}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{10}{49} ni \frac{100}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{10}{49}\right)^{2}=-\frac{390}{2401}
x^{2}-\frac{20}{49}x+\frac{100}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{10}{49}\right)^{2}}=\sqrt{-\frac{390}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{10}{49}=\frac{\sqrt{390}i}{49} x-\frac{10}{49}=-\frac{\sqrt{390}i}{49}
Qisqartirish.
x=\frac{10+\sqrt{390}i}{49} x=\frac{-\sqrt{390}i+10}{49}
\frac{10}{49} ni tenglamaning ikkala tarafiga qo'shish.