y uchun yechish
y=\frac{\sqrt{89}-1}{22}\approx 0,383362779
y=\frac{-\sqrt{89}-1}{22}\approx -0,47427187
Grafik
Baham ko'rish
Klipbordga nusxa olish
11y^{2}+y=2
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
11y^{2}+y-2=2-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
11y^{2}+y-2=0
O‘zidan 2 ayirilsa 0 qoladi.
y=\frac{-1±\sqrt{1^{2}-4\times 11\left(-2\right)}}{2\times 11}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 11 ni a, 1 ni b va -2 ni c bilan almashtiring.
y=\frac{-1±\sqrt{1-4\times 11\left(-2\right)}}{2\times 11}
1 kvadratini chiqarish.
y=\frac{-1±\sqrt{1-44\left(-2\right)}}{2\times 11}
-4 ni 11 marotabaga ko'paytirish.
y=\frac{-1±\sqrt{1+88}}{2\times 11}
-44 ni -2 marotabaga ko'paytirish.
y=\frac{-1±\sqrt{89}}{2\times 11}
1 ni 88 ga qo'shish.
y=\frac{-1±\sqrt{89}}{22}
2 ni 11 marotabaga ko'paytirish.
y=\frac{\sqrt{89}-1}{22}
y=\frac{-1±\sqrt{89}}{22} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{89} ga qo'shish.
y=\frac{-\sqrt{89}-1}{22}
y=\frac{-1±\sqrt{89}}{22} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{89} ni ayirish.
y=\frac{\sqrt{89}-1}{22} y=\frac{-\sqrt{89}-1}{22}
Tenglama yechildi.
11y^{2}+y=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{11y^{2}+y}{11}=\frac{2}{11}
Ikki tarafini 11 ga bo‘ling.
y^{2}+\frac{1}{11}y=\frac{2}{11}
11 ga bo'lish 11 ga ko'paytirishni bekor qiladi.
y^{2}+\frac{1}{11}y+\left(\frac{1}{22}\right)^{2}=\frac{2}{11}+\left(\frac{1}{22}\right)^{2}
\frac{1}{11} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{22} olish uchun. Keyin, \frac{1}{22} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+\frac{1}{11}y+\frac{1}{484}=\frac{2}{11}+\frac{1}{484}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{22} kvadratini chiqarish.
y^{2}+\frac{1}{11}y+\frac{1}{484}=\frac{89}{484}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{11} ni \frac{1}{484} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(y+\frac{1}{22}\right)^{2}=\frac{89}{484}
y^{2}+\frac{1}{11}y+\frac{1}{484} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+\frac{1}{22}\right)^{2}}=\sqrt{\frac{89}{484}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+\frac{1}{22}=\frac{\sqrt{89}}{22} y+\frac{1}{22}=-\frac{\sqrt{89}}{22}
Qisqartirish.
y=\frac{\sqrt{89}-1}{22} y=\frac{-\sqrt{89}-1}{22}
Tenglamaning ikkala tarafidan \frac{1}{22} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}