Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+9-4x-15x
3x^{2} ni olish uchun 11x^{2} va -8x^{2} ni birlashtirish.
3x^{2}+9-19x
-19x ni olish uchun -4x va -15x ni birlashtirish.
factor(3x^{2}+9-4x-15x)
3x^{2} ni olish uchun 11x^{2} va -8x^{2} ni birlashtirish.
factor(3x^{2}+9-19x)
-19x ni olish uchun -4x va -15x ni birlashtirish.
3x^{2}-19x+9=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 3\times 9}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 3\times 9}}{2\times 3}
-19 kvadratini chiqarish.
x=\frac{-\left(-19\right)±\sqrt{361-12\times 9}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{361-108}}{2\times 3}
-12 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{253}}{2\times 3}
361 ni -108 ga qo'shish.
x=\frac{19±\sqrt{253}}{2\times 3}
-19 ning teskarisi 19 ga teng.
x=\frac{19±\sqrt{253}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{253}+19}{6}
x=\frac{19±\sqrt{253}}{6} tenglamasini yeching, bunda ± musbat. 19 ni \sqrt{253} ga qo'shish.
x=\frac{19-\sqrt{253}}{6}
x=\frac{19±\sqrt{253}}{6} tenglamasini yeching, bunda ± manfiy. 19 dan \sqrt{253} ni ayirish.
3x^{2}-19x+9=3\left(x-\frac{\sqrt{253}+19}{6}\right)\left(x-\frac{19-\sqrt{253}}{6}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{19+\sqrt{253}}{6} ga va x_{2} uchun \frac{19-\sqrt{253}}{6} ga bo‘ling.