h uchun yechish
h = -\frac{12}{5} = -2\frac{2}{5} = -2,4
Viktorina
Linear Equation
5xshash muammolar:
11 h - ( 5 - 3 h ) - h - 7 ( 4 h - 3 ) = - h - ( - 52 - h )
Baham ko'rish
Klipbordga nusxa olish
11h-5-\left(-3h\right)-h-7\left(4h-3\right)=-h-\left(-52-h\right)
5-3h teskarisini topish uchun har birining teskarisini toping.
11h-5+3h-h-7\left(4h-3\right)=-h-\left(-52-h\right)
-3h ning teskarisi 3h ga teng.
14h-5-h-7\left(4h-3\right)=-h-\left(-52-h\right)
14h ni olish uchun 11h va 3h ni birlashtirish.
13h-5-7\left(4h-3\right)=-h-\left(-52-h\right)
13h ni olish uchun 14h va -h ni birlashtirish.
13h-5-28h+21=-h-\left(-52-h\right)
-7 ga 4h-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-15h-5+21=-h-\left(-52-h\right)
-15h ni olish uchun 13h va -28h ni birlashtirish.
-15h+16=-h-\left(-52-h\right)
16 olish uchun -5 va 21'ni qo'shing.
-15h+16=-h-\left(-52\right)-\left(-h\right)
-52-h teskarisini topish uchun har birining teskarisini toping.
-15h+16=-h+52-\left(-h\right)
-52 ning teskarisi 52 ga teng.
-15h+16=-h+52+h
-h ning teskarisi h ga teng.
-15h+16+h=52+h
h ni ikki tarafga qo’shing.
-14h+16=52+h
-14h ni olish uchun -15h va h ni birlashtirish.
-14h+16-h=52
Ikkala tarafdan h ni ayirish.
-15h+16=52
-15h ni olish uchun -14h va -h ni birlashtirish.
-15h=52-16
Ikkala tarafdan 16 ni ayirish.
-15h=36
36 olish uchun 52 dan 16 ni ayirish.
h=\frac{36}{-15}
Ikki tarafini -15 ga bo‘ling.
h=-\frac{12}{5}
\frac{36}{-15} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}