t uchun yechish
t=\frac{\sqrt{674}}{10}+\frac{11}{5}\approx 4,796150997
t=-\frac{\sqrt{674}}{10}+\frac{11}{5}\approx -0,396150997
Baham ko'rish
Klipbordga nusxa olish
11=-10t^{2}+44t+30
11 hosil qilish uchun 11 va 1 ni ko'paytirish.
-10t^{2}+44t+30=11
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-10t^{2}+44t+30-11=0
Ikkala tarafdan 11 ni ayirish.
-10t^{2}+44t+19=0
19 olish uchun 30 dan 11 ni ayirish.
t=\frac{-44±\sqrt{44^{2}-4\left(-10\right)\times 19}}{2\left(-10\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -10 ni a, 44 ni b va 19 ni c bilan almashtiring.
t=\frac{-44±\sqrt{1936-4\left(-10\right)\times 19}}{2\left(-10\right)}
44 kvadratini chiqarish.
t=\frac{-44±\sqrt{1936+40\times 19}}{2\left(-10\right)}
-4 ni -10 marotabaga ko'paytirish.
t=\frac{-44±\sqrt{1936+760}}{2\left(-10\right)}
40 ni 19 marotabaga ko'paytirish.
t=\frac{-44±\sqrt{2696}}{2\left(-10\right)}
1936 ni 760 ga qo'shish.
t=\frac{-44±2\sqrt{674}}{2\left(-10\right)}
2696 ning kvadrat ildizini chiqarish.
t=\frac{-44±2\sqrt{674}}{-20}
2 ni -10 marotabaga ko'paytirish.
t=\frac{2\sqrt{674}-44}{-20}
t=\frac{-44±2\sqrt{674}}{-20} tenglamasini yeching, bunda ± musbat. -44 ni 2\sqrt{674} ga qo'shish.
t=-\frac{\sqrt{674}}{10}+\frac{11}{5}
-44+2\sqrt{674} ni -20 ga bo'lish.
t=\frac{-2\sqrt{674}-44}{-20}
t=\frac{-44±2\sqrt{674}}{-20} tenglamasini yeching, bunda ± manfiy. -44 dan 2\sqrt{674} ni ayirish.
t=\frac{\sqrt{674}}{10}+\frac{11}{5}
-44-2\sqrt{674} ni -20 ga bo'lish.
t=-\frac{\sqrt{674}}{10}+\frac{11}{5} t=\frac{\sqrt{674}}{10}+\frac{11}{5}
Tenglama yechildi.
11=-10t^{2}+44t+30
11 hosil qilish uchun 11 va 1 ni ko'paytirish.
-10t^{2}+44t+30=11
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-10t^{2}+44t=11-30
Ikkala tarafdan 30 ni ayirish.
-10t^{2}+44t=-19
-19 olish uchun 11 dan 30 ni ayirish.
\frac{-10t^{2}+44t}{-10}=-\frac{19}{-10}
Ikki tarafini -10 ga bo‘ling.
t^{2}+\frac{44}{-10}t=-\frac{19}{-10}
-10 ga bo'lish -10 ga ko'paytirishni bekor qiladi.
t^{2}-\frac{22}{5}t=-\frac{19}{-10}
\frac{44}{-10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t^{2}-\frac{22}{5}t=\frac{19}{10}
-19 ni -10 ga bo'lish.
t^{2}-\frac{22}{5}t+\left(-\frac{11}{5}\right)^{2}=\frac{19}{10}+\left(-\frac{11}{5}\right)^{2}
-\frac{22}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{5} olish uchun. Keyin, -\frac{11}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-\frac{22}{5}t+\frac{121}{25}=\frac{19}{10}+\frac{121}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{5} kvadratini chiqarish.
t^{2}-\frac{22}{5}t+\frac{121}{25}=\frac{337}{50}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{19}{10} ni \frac{121}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(t-\frac{11}{5}\right)^{2}=\frac{337}{50}
t^{2}-\frac{22}{5}t+\frac{121}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{11}{5}\right)^{2}}=\sqrt{\frac{337}{50}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{11}{5}=\frac{\sqrt{674}}{10} t-\frac{11}{5}=-\frac{\sqrt{674}}{10}
Qisqartirish.
t=\frac{\sqrt{674}}{10}+\frac{11}{5} t=-\frac{\sqrt{674}}{10}+\frac{11}{5}
\frac{11}{5} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}