Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

11x^{2}-9x+1=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 11\times 1}}{2\times 11}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 11 ni, b uchun -9 ni va c uchun 1 ni ayiring.
x=\frac{9±\sqrt{37}}{22}
Hisoblarni amalga oshiring.
x=\frac{\sqrt{37}+9}{22} x=\frac{9-\sqrt{37}}{22}
x=\frac{9±\sqrt{37}}{22} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
11\left(x-\frac{\sqrt{37}+9}{22}\right)\left(x-\frac{9-\sqrt{37}}{22}\right)>0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
x-\frac{\sqrt{37}+9}{22}<0 x-\frac{9-\sqrt{37}}{22}<0
Koʻpaytma musbat boʻlishi uchun x-\frac{\sqrt{37}+9}{22} va x-\frac{9-\sqrt{37}}{22} ikkalasi yo manfiy, yo musbat boʻlishi kerak. x-\frac{\sqrt{37}+9}{22} va x-\frac{9-\sqrt{37}}{22} ikkalasi manfiy boʻlganda, yechimini toping.
x<\frac{9-\sqrt{37}}{22}
Ikkala tengsizlikning mos yechimi – x<\frac{9-\sqrt{37}}{22}.
x-\frac{9-\sqrt{37}}{22}>0 x-\frac{\sqrt{37}+9}{22}>0
x-\frac{\sqrt{37}+9}{22} va x-\frac{9-\sqrt{37}}{22} ikkalasi musbat boʻlganda, yechimini toping.
x>\frac{\sqrt{37}+9}{22}
Ikkala tengsizlikning mos yechimi – x>\frac{\sqrt{37}+9}{22}.
x<\frac{9-\sqrt{37}}{22}\text{; }x>\frac{\sqrt{37}+9}{22}
Oxirgi yechim olingan yechimlarning birlashmasidir.