Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

11x^{2}-54x-192=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}-4\times 11\left(-192\right)}}{2\times 11}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-54\right)±\sqrt{2916-4\times 11\left(-192\right)}}{2\times 11}
-54 kvadratini chiqarish.
x=\frac{-\left(-54\right)±\sqrt{2916-44\left(-192\right)}}{2\times 11}
-4 ni 11 marotabaga ko'paytirish.
x=\frac{-\left(-54\right)±\sqrt{2916+8448}}{2\times 11}
-44 ni -192 marotabaga ko'paytirish.
x=\frac{-\left(-54\right)±\sqrt{11364}}{2\times 11}
2916 ni 8448 ga qo'shish.
x=\frac{-\left(-54\right)±2\sqrt{2841}}{2\times 11}
11364 ning kvadrat ildizini chiqarish.
x=\frac{54±2\sqrt{2841}}{2\times 11}
-54 ning teskarisi 54 ga teng.
x=\frac{54±2\sqrt{2841}}{22}
2 ni 11 marotabaga ko'paytirish.
x=\frac{2\sqrt{2841}+54}{22}
x=\frac{54±2\sqrt{2841}}{22} tenglamasini yeching, bunda ± musbat. 54 ni 2\sqrt{2841} ga qo'shish.
x=\frac{\sqrt{2841}+27}{11}
54+2\sqrt{2841} ni 22 ga bo'lish.
x=\frac{54-2\sqrt{2841}}{22}
x=\frac{54±2\sqrt{2841}}{22} tenglamasini yeching, bunda ± manfiy. 54 dan 2\sqrt{2841} ni ayirish.
x=\frac{27-\sqrt{2841}}{11}
54-2\sqrt{2841} ni 22 ga bo'lish.
11x^{2}-54x-192=11\left(x-\frac{\sqrt{2841}+27}{11}\right)\left(x-\frac{27-\sqrt{2841}}{11}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{27+\sqrt{2841}}{11} ga va x_{2} uchun \frac{27-\sqrt{2841}}{11} ga bo‘ling.