Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=140 ab=11\left(-196\right)=-2156
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 11x^{2}+ax+bx-196 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,2156 -2,1078 -4,539 -7,308 -11,196 -14,154 -22,98 -28,77 -44,49
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -2156-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+2156=2155 -2+1078=1076 -4+539=535 -7+308=301 -11+196=185 -14+154=140 -22+98=76 -28+77=49 -44+49=5
Har bir juftlik yigʻindisini hisoblang.
a=-14 b=154
Yechim – 140 yigʻindisini beruvchi juftlik.
\left(11x^{2}-14x\right)+\left(154x-196\right)
11x^{2}+140x-196 ni \left(11x^{2}-14x\right)+\left(154x-196\right) sifatida qaytadan yozish.
x\left(11x-14\right)+14\left(11x-14\right)
Birinchi guruhda x ni va ikkinchi guruhda 14 ni faktordan chiqaring.
\left(11x-14\right)\left(x+14\right)
Distributiv funktsiyasidan foydalangan holda 11x-14 umumiy terminini chiqaring.
11x^{2}+140x-196=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-140±\sqrt{140^{2}-4\times 11\left(-196\right)}}{2\times 11}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-140±\sqrt{19600-4\times 11\left(-196\right)}}{2\times 11}
140 kvadratini chiqarish.
x=\frac{-140±\sqrt{19600-44\left(-196\right)}}{2\times 11}
-4 ni 11 marotabaga ko'paytirish.
x=\frac{-140±\sqrt{19600+8624}}{2\times 11}
-44 ni -196 marotabaga ko'paytirish.
x=\frac{-140±\sqrt{28224}}{2\times 11}
19600 ni 8624 ga qo'shish.
x=\frac{-140±168}{2\times 11}
28224 ning kvadrat ildizini chiqarish.
x=\frac{-140±168}{22}
2 ni 11 marotabaga ko'paytirish.
x=\frac{28}{22}
x=\frac{-140±168}{22} tenglamasini yeching, bunda ± musbat. -140 ni 168 ga qo'shish.
x=\frac{14}{11}
\frac{28}{22} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{308}{22}
x=\frac{-140±168}{22} tenglamasini yeching, bunda ± manfiy. -140 dan 168 ni ayirish.
x=-14
-308 ni 22 ga bo'lish.
11x^{2}+140x-196=11\left(x-\frac{14}{11}\right)\left(x-\left(-14\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{14}{11} ga va x_{2} uchun -14 ga bo‘ling.
11x^{2}+140x-196=11\left(x-\frac{14}{11}\right)\left(x+14\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
11x^{2}+140x-196=11\times \frac{11x-14}{11}\left(x+14\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{14}{11} ni x dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
11x^{2}+140x-196=\left(11x-14\right)\left(x+14\right)
11 va 11 ichida eng katta umumiy 11 faktorini bekor qiling.