r uchun yechish
r = \frac{\sqrt{10990}}{70} \approx 1,497617155
r = -\frac{\sqrt{10990}}{70} \approx -1,497617155
Baham ko'rish
Klipbordga nusxa olish
3150r^{2}=7065
3150 hosil qilish uchun 105 va 30 ni ko'paytirish.
r^{2}=\frac{7065}{3150}
Ikki tarafini 3150 ga bo‘ling.
r^{2}=\frac{157}{70}
\frac{7065}{3150} ulushini 45 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
r=\frac{\sqrt{10990}}{70} r=-\frac{\sqrt{10990}}{70}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
3150r^{2}=7065
3150 hosil qilish uchun 105 va 30 ni ko'paytirish.
3150r^{2}-7065=0
Ikkala tarafdan 7065 ni ayirish.
r=\frac{0±\sqrt{0^{2}-4\times 3150\left(-7065\right)}}{2\times 3150}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3150 ni a, 0 ni b va -7065 ni c bilan almashtiring.
r=\frac{0±\sqrt{-4\times 3150\left(-7065\right)}}{2\times 3150}
0 kvadratini chiqarish.
r=\frac{0±\sqrt{-12600\left(-7065\right)}}{2\times 3150}
-4 ni 3150 marotabaga ko'paytirish.
r=\frac{0±\sqrt{89019000}}{2\times 3150}
-12600 ni -7065 marotabaga ko'paytirish.
r=\frac{0±90\sqrt{10990}}{2\times 3150}
89019000 ning kvadrat ildizini chiqarish.
r=\frac{0±90\sqrt{10990}}{6300}
2 ni 3150 marotabaga ko'paytirish.
r=\frac{\sqrt{10990}}{70}
r=\frac{0±90\sqrt{10990}}{6300} tenglamasini yeching, bunda ± musbat.
r=-\frac{\sqrt{10990}}{70}
r=\frac{0±90\sqrt{10990}}{6300} tenglamasini yeching, bunda ± manfiy.
r=\frac{\sqrt{10990}}{70} r=-\frac{\sqrt{10990}}{70}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}