Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

101x^{2}+7x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{7^{2}-4\times 101\times 6}}{2\times 101}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 101 ni a, 7 ni b va 6 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\times 101\times 6}}{2\times 101}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-404\times 6}}{2\times 101}
-4 ni 101 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49-2424}}{2\times 101}
-404 ni 6 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{-2375}}{2\times 101}
49 ni -2424 ga qo'shish.
x=\frac{-7±5\sqrt{95}i}{2\times 101}
-2375 ning kvadrat ildizini chiqarish.
x=\frac{-7±5\sqrt{95}i}{202}
2 ni 101 marotabaga ko'paytirish.
x=\frac{-7+5\sqrt{95}i}{202}
x=\frac{-7±5\sqrt{95}i}{202} tenglamasini yeching, bunda ± musbat. -7 ni 5i\sqrt{95} ga qo'shish.
x=\frac{-5\sqrt{95}i-7}{202}
x=\frac{-7±5\sqrt{95}i}{202} tenglamasini yeching, bunda ± manfiy. -7 dan 5i\sqrt{95} ni ayirish.
x=\frac{-7+5\sqrt{95}i}{202} x=\frac{-5\sqrt{95}i-7}{202}
Tenglama yechildi.
101x^{2}+7x+6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
101x^{2}+7x+6-6=-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
101x^{2}+7x=-6
O‘zidan 6 ayirilsa 0 qoladi.
\frac{101x^{2}+7x}{101}=-\frac{6}{101}
Ikki tarafini 101 ga bo‘ling.
x^{2}+\frac{7}{101}x=-\frac{6}{101}
101 ga bo'lish 101 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{101}x+\left(\frac{7}{202}\right)^{2}=-\frac{6}{101}+\left(\frac{7}{202}\right)^{2}
\frac{7}{101} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{202} olish uchun. Keyin, \frac{7}{202} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{101}x+\frac{49}{40804}=-\frac{6}{101}+\frac{49}{40804}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{202} kvadratini chiqarish.
x^{2}+\frac{7}{101}x+\frac{49}{40804}=-\frac{2375}{40804}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{6}{101} ni \frac{49}{40804} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{7}{202}\right)^{2}=-\frac{2375}{40804}
x^{2}+\frac{7}{101}x+\frac{49}{40804} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{202}\right)^{2}}=\sqrt{-\frac{2375}{40804}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{202}=\frac{5\sqrt{95}i}{202} x+\frac{7}{202}=-\frac{5\sqrt{95}i}{202}
Qisqartirish.
x=\frac{-7+5\sqrt{95}i}{202} x=\frac{-5\sqrt{95}i-7}{202}
Tenglamaning ikkala tarafidan \frac{7}{202} ni ayirish.