x uchun yechish (complex solution)
x=\frac{-7+5\sqrt{95}i}{202}\approx -0,034653465+0,241257286i
x=\frac{-5\sqrt{95}i-7}{202}\approx -0,034653465-0,241257286i
Grafik
Baham ko'rish
Klipbordga nusxa olish
101x^{2}+7x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{7^{2}-4\times 101\times 6}}{2\times 101}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 101 ni a, 7 ni b va 6 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\times 101\times 6}}{2\times 101}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-404\times 6}}{2\times 101}
-4 ni 101 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49-2424}}{2\times 101}
-404 ni 6 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{-2375}}{2\times 101}
49 ni -2424 ga qo'shish.
x=\frac{-7±5\sqrt{95}i}{2\times 101}
-2375 ning kvadrat ildizini chiqarish.
x=\frac{-7±5\sqrt{95}i}{202}
2 ni 101 marotabaga ko'paytirish.
x=\frac{-7+5\sqrt{95}i}{202}
x=\frac{-7±5\sqrt{95}i}{202} tenglamasini yeching, bunda ± musbat. -7 ni 5i\sqrt{95} ga qo'shish.
x=\frac{-5\sqrt{95}i-7}{202}
x=\frac{-7±5\sqrt{95}i}{202} tenglamasini yeching, bunda ± manfiy. -7 dan 5i\sqrt{95} ni ayirish.
x=\frac{-7+5\sqrt{95}i}{202} x=\frac{-5\sqrt{95}i-7}{202}
Tenglama yechildi.
101x^{2}+7x+6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
101x^{2}+7x+6-6=-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
101x^{2}+7x=-6
O‘zidan 6 ayirilsa 0 qoladi.
\frac{101x^{2}+7x}{101}=-\frac{6}{101}
Ikki tarafini 101 ga bo‘ling.
x^{2}+\frac{7}{101}x=-\frac{6}{101}
101 ga bo'lish 101 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{101}x+\left(\frac{7}{202}\right)^{2}=-\frac{6}{101}+\left(\frac{7}{202}\right)^{2}
\frac{7}{101} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{202} olish uchun. Keyin, \frac{7}{202} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{101}x+\frac{49}{40804}=-\frac{6}{101}+\frac{49}{40804}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{202} kvadratini chiqarish.
x^{2}+\frac{7}{101}x+\frac{49}{40804}=-\frac{2375}{40804}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{6}{101} ni \frac{49}{40804} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{7}{202}\right)^{2}=-\frac{2375}{40804}
x^{2}+\frac{7}{101}x+\frac{49}{40804} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{202}\right)^{2}}=\sqrt{-\frac{2375}{40804}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{202}=\frac{5\sqrt{95}i}{202} x+\frac{7}{202}=-\frac{5\sqrt{95}i}{202}
Qisqartirish.
x=\frac{-7+5\sqrt{95}i}{202} x=\frac{-5\sqrt{95}i-7}{202}
Tenglamaning ikkala tarafidan \frac{7}{202} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}