Asosiy tarkibga oʻtish
p uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1000000+p^{2}=100
2 daraja ko‘rsatkichini 1000 ga hisoblang va 1000000 ni qiymatni oling.
p^{2}=100-1000000
Ikkala tarafdan 1000000 ni ayirish.
p^{2}=-999900
-999900 olish uchun 100 dan 1000000 ni ayirish.
p=30\sqrt{1111}i p=-30\sqrt{1111}i
Tenglama yechildi.
1000000+p^{2}=100
2 daraja ko‘rsatkichini 1000 ga hisoblang va 1000000 ni qiymatni oling.
1000000+p^{2}-100=0
Ikkala tarafdan 100 ni ayirish.
999900+p^{2}=0
999900 olish uchun 1000000 dan 100 ni ayirish.
p^{2}+999900=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
p=\frac{0±\sqrt{0^{2}-4\times 999900}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va 999900 ni c bilan almashtiring.
p=\frac{0±\sqrt{-4\times 999900}}{2}
0 kvadratini chiqarish.
p=\frac{0±\sqrt{-3999600}}{2}
-4 ni 999900 marotabaga ko'paytirish.
p=\frac{0±60\sqrt{1111}i}{2}
-3999600 ning kvadrat ildizini chiqarish.
p=30\sqrt{1111}i
p=\frac{0±60\sqrt{1111}i}{2} tenglamasini yeching, bunda ± musbat.
p=-30\sqrt{1111}i
p=\frac{0±60\sqrt{1111}i}{2} tenglamasini yeching, bunda ± manfiy.
p=30\sqrt{1111}i p=-30\sqrt{1111}i
Tenglama yechildi.