x uchun yechish
x=\frac{3}{10}=0,3
x=\frac{3}{5}=0,6
Grafik
Baham ko'rish
Klipbordga nusxa olish
100x^{2}-90x+18=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 100\times 18}}{2\times 100}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 100 ni a, -90 ni b va 18 ni c bilan almashtiring.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 100\times 18}}{2\times 100}
-90 kvadratini chiqarish.
x=\frac{-\left(-90\right)±\sqrt{8100-400\times 18}}{2\times 100}
-4 ni 100 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{8100-7200}}{2\times 100}
-400 ni 18 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{900}}{2\times 100}
8100 ni -7200 ga qo'shish.
x=\frac{-\left(-90\right)±30}{2\times 100}
900 ning kvadrat ildizini chiqarish.
x=\frac{90±30}{2\times 100}
-90 ning teskarisi 90 ga teng.
x=\frac{90±30}{200}
2 ni 100 marotabaga ko'paytirish.
x=\frac{120}{200}
x=\frac{90±30}{200} tenglamasini yeching, bunda ± musbat. 90 ni 30 ga qo'shish.
x=\frac{3}{5}
\frac{120}{200} ulushini 40 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{60}{200}
x=\frac{90±30}{200} tenglamasini yeching, bunda ± manfiy. 90 dan 30 ni ayirish.
x=\frac{3}{10}
\frac{60}{200} ulushini 20 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{3}{5} x=\frac{3}{10}
Tenglama yechildi.
100x^{2}-90x+18=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
100x^{2}-90x+18-18=-18
Tenglamaning ikkala tarafidan 18 ni ayirish.
100x^{2}-90x=-18
O‘zidan 18 ayirilsa 0 qoladi.
\frac{100x^{2}-90x}{100}=-\frac{18}{100}
Ikki tarafini 100 ga bo‘ling.
x^{2}+\left(-\frac{90}{100}\right)x=-\frac{18}{100}
100 ga bo'lish 100 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{9}{10}x=-\frac{18}{100}
\frac{-90}{100} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{9}{10}x=-\frac{9}{50}
\frac{-18}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{9}{10}x+\left(-\frac{9}{20}\right)^{2}=-\frac{9}{50}+\left(-\frac{9}{20}\right)^{2}
-\frac{9}{10} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{20} olish uchun. Keyin, -\frac{9}{20} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{9}{10}x+\frac{81}{400}=-\frac{9}{50}+\frac{81}{400}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{20} kvadratini chiqarish.
x^{2}-\frac{9}{10}x+\frac{81}{400}=\frac{9}{400}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{50} ni \frac{81}{400} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{9}{20}\right)^{2}=\frac{9}{400}
x^{2}-\frac{9}{10}x+\frac{81}{400} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{20}\right)^{2}}=\sqrt{\frac{9}{400}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{20}=\frac{3}{20} x-\frac{9}{20}=-\frac{3}{20}
Qisqartirish.
x=\frac{3}{5} x=\frac{3}{10}
\frac{9}{20} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}