Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

100x^{2}-50x+18=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 100\times 18}}{2\times 100}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 100 ni a, -50 ni b va 18 ni c bilan almashtiring.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 100\times 18}}{2\times 100}
-50 kvadratini chiqarish.
x=\frac{-\left(-50\right)±\sqrt{2500-400\times 18}}{2\times 100}
-4 ni 100 marotabaga ko'paytirish.
x=\frac{-\left(-50\right)±\sqrt{2500-7200}}{2\times 100}
-400 ni 18 marotabaga ko'paytirish.
x=\frac{-\left(-50\right)±\sqrt{-4700}}{2\times 100}
2500 ni -7200 ga qo'shish.
x=\frac{-\left(-50\right)±10\sqrt{47}i}{2\times 100}
-4700 ning kvadrat ildizini chiqarish.
x=\frac{50±10\sqrt{47}i}{2\times 100}
-50 ning teskarisi 50 ga teng.
x=\frac{50±10\sqrt{47}i}{200}
2 ni 100 marotabaga ko'paytirish.
x=\frac{50+10\sqrt{47}i}{200}
x=\frac{50±10\sqrt{47}i}{200} tenglamasini yeching, bunda ± musbat. 50 ni 10i\sqrt{47} ga qo'shish.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4}
50+10i\sqrt{47} ni 200 ga bo'lish.
x=\frac{-10\sqrt{47}i+50}{200}
x=\frac{50±10\sqrt{47}i}{200} tenglamasini yeching, bunda ± manfiy. 50 dan 10i\sqrt{47} ni ayirish.
x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
50-10i\sqrt{47} ni 200 ga bo'lish.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4} x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
Tenglama yechildi.
100x^{2}-50x+18=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
100x^{2}-50x+18-18=-18
Tenglamaning ikkala tarafidan 18 ni ayirish.
100x^{2}-50x=-18
O‘zidan 18 ayirilsa 0 qoladi.
\frac{100x^{2}-50x}{100}=-\frac{18}{100}
Ikki tarafini 100 ga bo‘ling.
x^{2}+\left(-\frac{50}{100}\right)x=-\frac{18}{100}
100 ga bo'lish 100 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=-\frac{18}{100}
\frac{-50}{100} ulushini 50 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{2}x=-\frac{9}{50}
\frac{-18}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{9}{50}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{9}{50}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{47}{400}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{50} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{4}\right)^{2}=-\frac{47}{400}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{47}{400}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{\sqrt{47}i}{20} x-\frac{1}{4}=-\frac{\sqrt{47}i}{20}
Qisqartirish.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4} x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.