Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

100=20t+49t^{2}
49 hosil qilish uchun \frac{1}{2} va 98 ni ko'paytirish.
20t+49t^{2}=100
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
20t+49t^{2}-100=0
Ikkala tarafdan 100 ni ayirish.
49t^{2}+20t-100=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-20±\sqrt{20^{2}-4\times 49\left(-100\right)}}{2\times 49}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 49 ni a, 20 ni b va -100 ni c bilan almashtiring.
t=\frac{-20±\sqrt{400-4\times 49\left(-100\right)}}{2\times 49}
20 kvadratini chiqarish.
t=\frac{-20±\sqrt{400-196\left(-100\right)}}{2\times 49}
-4 ni 49 marotabaga ko'paytirish.
t=\frac{-20±\sqrt{400+19600}}{2\times 49}
-196 ni -100 marotabaga ko'paytirish.
t=\frac{-20±\sqrt{20000}}{2\times 49}
400 ni 19600 ga qo'shish.
t=\frac{-20±100\sqrt{2}}{2\times 49}
20000 ning kvadrat ildizini chiqarish.
t=\frac{-20±100\sqrt{2}}{98}
2 ni 49 marotabaga ko'paytirish.
t=\frac{100\sqrt{2}-20}{98}
t=\frac{-20±100\sqrt{2}}{98} tenglamasini yeching, bunda ± musbat. -20 ni 100\sqrt{2} ga qo'shish.
t=\frac{50\sqrt{2}-10}{49}
-20+100\sqrt{2} ni 98 ga bo'lish.
t=\frac{-100\sqrt{2}-20}{98}
t=\frac{-20±100\sqrt{2}}{98} tenglamasini yeching, bunda ± manfiy. -20 dan 100\sqrt{2} ni ayirish.
t=\frac{-50\sqrt{2}-10}{49}
-20-100\sqrt{2} ni 98 ga bo'lish.
t=\frac{50\sqrt{2}-10}{49} t=\frac{-50\sqrt{2}-10}{49}
Tenglama yechildi.
100=20t+49t^{2}
49 hosil qilish uchun \frac{1}{2} va 98 ni ko'paytirish.
20t+49t^{2}=100
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
49t^{2}+20t=100
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{49t^{2}+20t}{49}=\frac{100}{49}
Ikki tarafini 49 ga bo‘ling.
t^{2}+\frac{20}{49}t=\frac{100}{49}
49 ga bo'lish 49 ga ko'paytirishni bekor qiladi.
t^{2}+\frac{20}{49}t+\left(\frac{10}{49}\right)^{2}=\frac{100}{49}+\left(\frac{10}{49}\right)^{2}
\frac{20}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{10}{49} olish uchun. Keyin, \frac{10}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}+\frac{20}{49}t+\frac{100}{2401}=\frac{100}{49}+\frac{100}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{10}{49} kvadratini chiqarish.
t^{2}+\frac{20}{49}t+\frac{100}{2401}=\frac{5000}{2401}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{100}{49} ni \frac{100}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(t+\frac{10}{49}\right)^{2}=\frac{5000}{2401}
t^{2}+\frac{20}{49}t+\frac{100}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t+\frac{10}{49}\right)^{2}}=\sqrt{\frac{5000}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t+\frac{10}{49}=\frac{50\sqrt{2}}{49} t+\frac{10}{49}=-\frac{50\sqrt{2}}{49}
Qisqartirish.
t=\frac{50\sqrt{2}-10}{49} t=\frac{-50\sqrt{2}-10}{49}
Tenglamaning ikkala tarafidan \frac{10}{49} ni ayirish.