t uchun yechish
t = \frac{50 \sqrt{2} - 10}{49} \approx 1,238993431
t=\frac{-50\sqrt{2}-10}{49}\approx -1,647156696
Baham ko'rish
Klipbordga nusxa olish
100=20t+49t^{2}
49 hosil qilish uchun \frac{1}{2} va 98 ni ko'paytirish.
20t+49t^{2}=100
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
20t+49t^{2}-100=0
Ikkala tarafdan 100 ni ayirish.
49t^{2}+20t-100=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-20±\sqrt{20^{2}-4\times 49\left(-100\right)}}{2\times 49}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 49 ni a, 20 ni b va -100 ni c bilan almashtiring.
t=\frac{-20±\sqrt{400-4\times 49\left(-100\right)}}{2\times 49}
20 kvadratini chiqarish.
t=\frac{-20±\sqrt{400-196\left(-100\right)}}{2\times 49}
-4 ni 49 marotabaga ko'paytirish.
t=\frac{-20±\sqrt{400+19600}}{2\times 49}
-196 ni -100 marotabaga ko'paytirish.
t=\frac{-20±\sqrt{20000}}{2\times 49}
400 ni 19600 ga qo'shish.
t=\frac{-20±100\sqrt{2}}{2\times 49}
20000 ning kvadrat ildizini chiqarish.
t=\frac{-20±100\sqrt{2}}{98}
2 ni 49 marotabaga ko'paytirish.
t=\frac{100\sqrt{2}-20}{98}
t=\frac{-20±100\sqrt{2}}{98} tenglamasini yeching, bunda ± musbat. -20 ni 100\sqrt{2} ga qo'shish.
t=\frac{50\sqrt{2}-10}{49}
-20+100\sqrt{2} ni 98 ga bo'lish.
t=\frac{-100\sqrt{2}-20}{98}
t=\frac{-20±100\sqrt{2}}{98} tenglamasini yeching, bunda ± manfiy. -20 dan 100\sqrt{2} ni ayirish.
t=\frac{-50\sqrt{2}-10}{49}
-20-100\sqrt{2} ni 98 ga bo'lish.
t=\frac{50\sqrt{2}-10}{49} t=\frac{-50\sqrt{2}-10}{49}
Tenglama yechildi.
100=20t+49t^{2}
49 hosil qilish uchun \frac{1}{2} va 98 ni ko'paytirish.
20t+49t^{2}=100
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
49t^{2}+20t=100
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{49t^{2}+20t}{49}=\frac{100}{49}
Ikki tarafini 49 ga bo‘ling.
t^{2}+\frac{20}{49}t=\frac{100}{49}
49 ga bo'lish 49 ga ko'paytirishni bekor qiladi.
t^{2}+\frac{20}{49}t+\left(\frac{10}{49}\right)^{2}=\frac{100}{49}+\left(\frac{10}{49}\right)^{2}
\frac{20}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{10}{49} olish uchun. Keyin, \frac{10}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}+\frac{20}{49}t+\frac{100}{2401}=\frac{100}{49}+\frac{100}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{10}{49} kvadratini chiqarish.
t^{2}+\frac{20}{49}t+\frac{100}{2401}=\frac{5000}{2401}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{100}{49} ni \frac{100}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(t+\frac{10}{49}\right)^{2}=\frac{5000}{2401}
t^{2}+\frac{20}{49}t+\frac{100}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t+\frac{10}{49}\right)^{2}}=\sqrt{\frac{5000}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t+\frac{10}{49}=\frac{50\sqrt{2}}{49} t+\frac{10}{49}=-\frac{50\sqrt{2}}{49}
Qisqartirish.
t=\frac{50\sqrt{2}-10}{49} t=\frac{-50\sqrt{2}-10}{49}
Tenglamaning ikkala tarafidan \frac{10}{49} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}