Baholash
\frac{21y}{20}
y ga nisbatan hosilani topish
\frac{21}{20} = 1\frac{1}{20} = 1,05
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{10y}{25}+\frac{26y}{40}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
\frac{2}{5}y+\frac{26y}{40}
\frac{2}{5}y ni olish uchun 10y ni 25 ga bo‘ling.
\frac{2}{5}y+\frac{13}{20}y
\frac{13}{20}y ni olish uchun 26y ni 40 ga bo‘ling.
\frac{21}{20}y
\frac{21}{20}y ni olish uchun \frac{2}{5}y va \frac{13}{20}y ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{10y}{25}+\frac{26y}{40})
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{26y}{40})
\frac{2}{5}y ni olish uchun 10y ni 25 ga bo‘ling.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{13}{20}y)
\frac{13}{20}y ni olish uchun 26y ni 40 ga bo‘ling.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{21}{20}y)
\frac{21}{20}y ni olish uchun \frac{2}{5}y va \frac{13}{20}y ni birlashtirish.
\frac{21}{20}y^{1-1}
ax^{n} hosilasi – nax^{n-1}.
\frac{21}{20}y^{0}
1 dan 1 ni ayirish.
\frac{21}{20}\times 1
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{21}{20}
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}