Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

10x^{2}-x+3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 10\times 3}}{2\times 10}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 10 ni a, -1 ni b va 3 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-40\times 3}}{2\times 10}
-4 ni 10 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1-120}}{2\times 10}
-40 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-119}}{2\times 10}
1 ni -120 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{119}i}{2\times 10}
-119 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{119}i}{2\times 10}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{119}i}{20}
2 ni 10 marotabaga ko'paytirish.
x=\frac{1+\sqrt{119}i}{20}
x=\frac{1±\sqrt{119}i}{20} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{119} ga qo'shish.
x=\frac{-\sqrt{119}i+1}{20}
x=\frac{1±\sqrt{119}i}{20} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{119} ni ayirish.
x=\frac{1+\sqrt{119}i}{20} x=\frac{-\sqrt{119}i+1}{20}
Tenglama yechildi.
10x^{2}-x+3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
10x^{2}-x+3-3=-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
10x^{2}-x=-3
O‘zidan 3 ayirilsa 0 qoladi.
\frac{10x^{2}-x}{10}=-\frac{3}{10}
Ikki tarafini 10 ga bo‘ling.
x^{2}-\frac{1}{10}x=-\frac{3}{10}
10 ga bo'lish 10 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{10}x+\left(-\frac{1}{20}\right)^{2}=-\frac{3}{10}+\left(-\frac{1}{20}\right)^{2}
-\frac{1}{10} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{20} olish uchun. Keyin, -\frac{1}{20} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{10}x+\frac{1}{400}=-\frac{3}{10}+\frac{1}{400}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{20} kvadratini chiqarish.
x^{2}-\frac{1}{10}x+\frac{1}{400}=-\frac{119}{400}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{10} ni \frac{1}{400} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{20}\right)^{2}=-\frac{119}{400}
x^{2}-\frac{1}{10}x+\frac{1}{400} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{20}\right)^{2}}=\sqrt{-\frac{119}{400}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{20}=\frac{\sqrt{119}i}{20} x-\frac{1}{20}=-\frac{\sqrt{119}i}{20}
Qisqartirish.
x=\frac{1+\sqrt{119}i}{20} x=\frac{-\sqrt{119}i+1}{20}
\frac{1}{20} ni tenglamaning ikkala tarafiga qo'shish.