x uchun yechish
x = \frac{13}{2} = 6\frac{1}{2} = 6,5
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
10x^{2}-65x+0=0
0 hosil qilish uchun 0 va 75 ni ko'paytirish.
10x^{2}-65x=0
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x\left(10x-65\right)=0
x omili.
x=0 x=\frac{13}{2}
Tenglamani yechish uchun x=0 va 10x-65=0 ni yeching.
10x^{2}-65x+0=0
0 hosil qilish uchun 0 va 75 ni ko'paytirish.
10x^{2}-65x=0
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x=\frac{-\left(-65\right)±\sqrt{\left(-65\right)^{2}}}{2\times 10}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 10 ni a, -65 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-65\right)±65}{2\times 10}
\left(-65\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{65±65}{2\times 10}
-65 ning teskarisi 65 ga teng.
x=\frac{65±65}{20}
2 ni 10 marotabaga ko'paytirish.
x=\frac{130}{20}
x=\frac{65±65}{20} tenglamasini yeching, bunda ± musbat. 65 ni 65 ga qo'shish.
x=\frac{13}{2}
\frac{130}{20} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{20}
x=\frac{65±65}{20} tenglamasini yeching, bunda ± manfiy. 65 dan 65 ni ayirish.
x=0
0 ni 20 ga bo'lish.
x=\frac{13}{2} x=0
Tenglama yechildi.
10x^{2}-65x+0=0
0 hosil qilish uchun 0 va 75 ni ko'paytirish.
10x^{2}-65x=0
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{10x^{2}-65x}{10}=\frac{0}{10}
Ikki tarafini 10 ga bo‘ling.
x^{2}+\left(-\frac{65}{10}\right)x=\frac{0}{10}
10 ga bo'lish 10 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{13}{2}x=\frac{0}{10}
\frac{-65}{10} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{13}{2}x=0
0 ni 10 ga bo'lish.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=\left(-\frac{13}{4}\right)^{2}
-\frac{13}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{4} olish uchun. Keyin, -\frac{13}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{169}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{4} kvadratini chiqarish.
\left(x-\frac{13}{4}\right)^{2}=\frac{169}{16}
x^{2}-\frac{13}{2}x+\frac{169}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{13}{4}=\frac{13}{4} x-\frac{13}{4}=-\frac{13}{4}
Qisqartirish.
x=\frac{13}{2} x=0
\frac{13}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}