x uchun yechish
x=\frac{1}{2}=0,5
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
x\left(10x-5\right)=0
x omili.
x=0 x=\frac{1}{2}
Tenglamani yechish uchun x=0 va 10x-5=0 ni yeching.
10x^{2}-5x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2\times 10}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 10 ni a, -5 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±5}{2\times 10}
\left(-5\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{5±5}{2\times 10}
-5 ning teskarisi 5 ga teng.
x=\frac{5±5}{20}
2 ni 10 marotabaga ko'paytirish.
x=\frac{10}{20}
x=\frac{5±5}{20} tenglamasini yeching, bunda ± musbat. 5 ni 5 ga qo'shish.
x=\frac{1}{2}
\frac{10}{20} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{20}
x=\frac{5±5}{20} tenglamasini yeching, bunda ± manfiy. 5 dan 5 ni ayirish.
x=0
0 ni 20 ga bo'lish.
x=\frac{1}{2} x=0
Tenglama yechildi.
10x^{2}-5x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{10x^{2}-5x}{10}=\frac{0}{10}
Ikki tarafini 10 ga bo‘ling.
x^{2}+\left(-\frac{5}{10}\right)x=\frac{0}{10}
10 ga bo'lish 10 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=\frac{0}{10}
\frac{-5}{10} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{2}x=0
0 ni 10 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4}=-\frac{1}{4}
Qisqartirish.
x=\frac{1}{2} x=0
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}