Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4=0
Ikki tarafini 10 ga bo‘ling.
\left(x-2\right)\left(x+2\right)=0
Hisoblang: x^{2}-4. x^{2}-4 ni x^{2}-2^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
Tenglamani yechish uchun x-2=0 va x+2=0 ni yeching.
10x^{2}=40
40 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{40}{10}
Ikki tarafini 10 ga bo‘ling.
x^{2}=4
4 ni olish uchun 40 ni 10 ga bo‘ling.
x=2 x=-2
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
10x^{2}-40=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 10\left(-40\right)}}{2\times 10}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 10 ni a, 0 ni b va -40 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 10\left(-40\right)}}{2\times 10}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-40\left(-40\right)}}{2\times 10}
-4 ni 10 marotabaga ko'paytirish.
x=\frac{0±\sqrt{1600}}{2\times 10}
-40 ni -40 marotabaga ko'paytirish.
x=\frac{0±40}{2\times 10}
1600 ning kvadrat ildizini chiqarish.
x=\frac{0±40}{20}
2 ni 10 marotabaga ko'paytirish.
x=2
x=\frac{0±40}{20} tenglamasini yeching, bunda ± musbat. 40 ni 20 ga bo'lish.
x=-2
x=\frac{0±40}{20} tenglamasini yeching, bunda ± manfiy. -40 ni 20 ga bo'lish.
x=2 x=-2
Tenglama yechildi.