Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

10x^{2}+3x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\times 10\left(-3\right)}}{2\times 10}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 10 ni a, 3 ni b va -3 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times 10\left(-3\right)}}{2\times 10}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-40\left(-3\right)}}{2\times 10}
-4 ni 10 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+120}}{2\times 10}
-40 ni -3 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{129}}{2\times 10}
9 ni 120 ga qo'shish.
x=\frac{-3±\sqrt{129}}{20}
2 ni 10 marotabaga ko'paytirish.
x=\frac{\sqrt{129}-3}{20}
x=\frac{-3±\sqrt{129}}{20} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{129} ga qo'shish.
x=\frac{-\sqrt{129}-3}{20}
x=\frac{-3±\sqrt{129}}{20} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{129} ni ayirish.
x=\frac{\sqrt{129}-3}{20} x=\frac{-\sqrt{129}-3}{20}
Tenglama yechildi.
10x^{2}+3x-3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
10x^{2}+3x-3-\left(-3\right)=-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
10x^{2}+3x=-\left(-3\right)
O‘zidan -3 ayirilsa 0 qoladi.
10x^{2}+3x=3
0 dan -3 ni ayirish.
\frac{10x^{2}+3x}{10}=\frac{3}{10}
Ikki tarafini 10 ga bo‘ling.
x^{2}+\frac{3}{10}x=\frac{3}{10}
10 ga bo'lish 10 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{10}x+\left(\frac{3}{20}\right)^{2}=\frac{3}{10}+\left(\frac{3}{20}\right)^{2}
\frac{3}{10} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{20} olish uchun. Keyin, \frac{3}{20} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{10}x+\frac{9}{400}=\frac{3}{10}+\frac{9}{400}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{20} kvadratini chiqarish.
x^{2}+\frac{3}{10}x+\frac{9}{400}=\frac{129}{400}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{10} ni \frac{9}{400} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{20}\right)^{2}=\frac{129}{400}
x^{2}+\frac{3}{10}x+\frac{9}{400} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{20}\right)^{2}}=\sqrt{\frac{129}{400}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{20}=\frac{\sqrt{129}}{20} x+\frac{3}{20}=-\frac{\sqrt{129}}{20}
Qisqartirish.
x=\frac{\sqrt{129}-3}{20} x=\frac{-\sqrt{129}-3}{20}
Tenglamaning ikkala tarafidan \frac{3}{20} ni ayirish.