x uchun yechish (complex solution)
x=6+3\sqrt{6}i\approx 6+7,348469228i
x=-3\sqrt{6}i+6\approx 6-7,348469228i
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
10 ^ { 2 } + x ^ { 2 } = 8 ^ { 2 } - ( 12 - x ) ^ { 2 }
Baham ko'rish
Klipbordga nusxa olish
100+x^{2}=8^{2}-\left(12-x\right)^{2}
2 daraja ko‘rsatkichini 10 ga hisoblang va 100 ni qiymatni oling.
100+x^{2}=64-\left(12-x\right)^{2}
2 daraja ko‘rsatkichini 8 ga hisoblang va 64 ni qiymatni oling.
100+x^{2}=64-\left(144-24x+x^{2}\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(12-x\right)^{2} kengaytirilishi uchun ishlating.
100+x^{2}=64-144+24x-x^{2}
144-24x+x^{2} teskarisini topish uchun har birining teskarisini toping.
100+x^{2}=-80+24x-x^{2}
-80 olish uchun 64 dan 144 ni ayirish.
100+x^{2}-\left(-80\right)=24x-x^{2}
Ikkala tarafdan -80 ni ayirish.
100+x^{2}+80=24x-x^{2}
-80 ning teskarisi 80 ga teng.
100+x^{2}+80-24x=-x^{2}
Ikkala tarafdan 24x ni ayirish.
180+x^{2}-24x=-x^{2}
180 olish uchun 100 va 80'ni qo'shing.
180+x^{2}-24x+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
180+2x^{2}-24x=0
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}-24x+180=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\times 180}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -24 ni b va 180 ni c bilan almashtiring.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 2\times 180}}{2\times 2}
-24 kvadratini chiqarish.
x=\frac{-\left(-24\right)±\sqrt{576-8\times 180}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{576-1440}}{2\times 2}
-8 ni 180 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{-864}}{2\times 2}
576 ni -1440 ga qo'shish.
x=\frac{-\left(-24\right)±12\sqrt{6}i}{2\times 2}
-864 ning kvadrat ildizini chiqarish.
x=\frac{24±12\sqrt{6}i}{2\times 2}
-24 ning teskarisi 24 ga teng.
x=\frac{24±12\sqrt{6}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{24+12\sqrt{6}i}{4}
x=\frac{24±12\sqrt{6}i}{4} tenglamasini yeching, bunda ± musbat. 24 ni 12i\sqrt{6} ga qo'shish.
x=6+3\sqrt{6}i
24+12i\sqrt{6} ni 4 ga bo'lish.
x=\frac{-12\sqrt{6}i+24}{4}
x=\frac{24±12\sqrt{6}i}{4} tenglamasini yeching, bunda ± manfiy. 24 dan 12i\sqrt{6} ni ayirish.
x=-3\sqrt{6}i+6
24-12i\sqrt{6} ni 4 ga bo'lish.
x=6+3\sqrt{6}i x=-3\sqrt{6}i+6
Tenglama yechildi.
100+x^{2}=8^{2}-\left(12-x\right)^{2}
2 daraja ko‘rsatkichini 10 ga hisoblang va 100 ni qiymatni oling.
100+x^{2}=64-\left(12-x\right)^{2}
2 daraja ko‘rsatkichini 8 ga hisoblang va 64 ni qiymatni oling.
100+x^{2}=64-\left(144-24x+x^{2}\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(12-x\right)^{2} kengaytirilishi uchun ishlating.
100+x^{2}=64-144+24x-x^{2}
144-24x+x^{2} teskarisini topish uchun har birining teskarisini toping.
100+x^{2}=-80+24x-x^{2}
-80 olish uchun 64 dan 144 ni ayirish.
100+x^{2}-24x=-80-x^{2}
Ikkala tarafdan 24x ni ayirish.
100+x^{2}-24x+x^{2}=-80
x^{2} ni ikki tarafga qo’shing.
100+2x^{2}-24x=-80
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}-24x=-80-100
Ikkala tarafdan 100 ni ayirish.
2x^{2}-24x=-180
-180 olish uchun -80 dan 100 ni ayirish.
\frac{2x^{2}-24x}{2}=-\frac{180}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{24}{2}\right)x=-\frac{180}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-12x=-\frac{180}{2}
-24 ni 2 ga bo'lish.
x^{2}-12x=-90
-180 ni 2 ga bo'lish.
x^{2}-12x+\left(-6\right)^{2}=-90+\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-12x+36=-90+36
-6 kvadratini chiqarish.
x^{2}-12x+36=-54
-90 ni 36 ga qo'shish.
\left(x-6\right)^{2}=-54
x^{2}-12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-6\right)^{2}}=\sqrt{-54}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-6=3\sqrt{6}i x-6=-3\sqrt{6}i
Qisqartirish.
x=6+3\sqrt{6}i x=-3\sqrt{6}i+6
6 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}