x uchun yechish
x = \frac{3}{2} = 1\frac{1}{2} = 1,5
x uchun yechish (complex solution)
x=-\frac{\pi n_{1}i\log(e)}{5}+\frac{3}{2}
n_{1}\in \mathrm{Z}
Grafik
Baham ko'rish
Klipbordga nusxa olish
100^{8-5x}=10
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
100^{-5x+8}=10
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\log(100^{-5x+8})=\log(10)
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
\left(-5x+8\right)\log(100)=\log(10)
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
-5x+8=\frac{\log(10)}{\log(100)}
Ikki tarafini \log(100) ga bo‘ling.
-5x+8=\log_{100}\left(10\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
-5x=\frac{1}{2}-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
x=-\frac{\frac{15}{2}}{-5}
Ikki tarafini -5 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}