Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

174\times 10^{-5}x=-x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
174\times \frac{1}{100000}x=-x^{2}
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
\frac{87}{50000}x=-x^{2}
\frac{87}{50000} hosil qilish uchun 174 va \frac{1}{100000} ni ko'paytirish.
\frac{87}{50000}x+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
x\left(\frac{87}{50000}+x\right)=0
x omili.
x=0 x=-\frac{87}{50000}
Tenglamani yechish uchun x=0 va \frac{87}{50000}+x=0 ni yeching.
x=-\frac{87}{50000}
x qiymati 0 teng bo‘lmaydi.
174\times 10^{-5}x=-x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
174\times \frac{1}{100000}x=-x^{2}
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
\frac{87}{50000}x=-x^{2}
\frac{87}{50000} hosil qilish uchun 174 va \frac{1}{100000} ni ko'paytirish.
\frac{87}{50000}x+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
x^{2}+\frac{87}{50000}x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\frac{87}{50000}±\sqrt{\left(\frac{87}{50000}\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, \frac{87}{50000} ni b va 0 ni c bilan almashtiring.
x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2}
\left(\frac{87}{50000}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{0}{2}
x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{87}{50000} ni \frac{87}{50000} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=0
0 ni 2 ga bo'lish.
x=-\frac{\frac{87}{25000}}{2}
x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{87}{50000} ni -\frac{87}{50000} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=-\frac{87}{50000}
-\frac{87}{25000} ni 2 ga bo'lish.
x=0 x=-\frac{87}{50000}
Tenglama yechildi.
x=-\frac{87}{50000}
x qiymati 0 teng bo‘lmaydi.
174\times 10^{-5}x=-x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
174\times \frac{1}{100000}x=-x^{2}
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
\frac{87}{50000}x=-x^{2}
\frac{87}{50000} hosil qilish uchun 174 va \frac{1}{100000} ni ko'paytirish.
\frac{87}{50000}x+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
x^{2}+\frac{87}{50000}x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+\frac{87}{50000}x+\left(\frac{87}{100000}\right)^{2}=\left(\frac{87}{100000}\right)^{2}
\frac{87}{50000} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{87}{100000} olish uchun. Keyin, \frac{87}{100000} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{87}{50000}x+\frac{7569}{10000000000}=\frac{7569}{10000000000}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{87}{100000} kvadratini chiqarish.
\left(x+\frac{87}{100000}\right)^{2}=\frac{7569}{10000000000}
x^{2}+\frac{87}{50000}x+\frac{7569}{10000000000} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{87}{100000}\right)^{2}}=\sqrt{\frac{7569}{10000000000}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{87}{100000}=\frac{87}{100000} x+\frac{87}{100000}=-\frac{87}{100000}
Qisqartirish.
x=0 x=-\frac{87}{50000}
Tenglamaning ikkala tarafidan \frac{87}{100000} ni ayirish.
x=-\frac{87}{50000}
x qiymati 0 teng bo‘lmaydi.