y uchun yechish
y = \frac{3}{2} = 1\frac{1}{2} = 1,5
y=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
16y^{2}=24y-0
0 hosil qilish uchun 0 va 9 ni ko'paytirish.
16y^{2}+0=24y
0 ni ikki tarafga qo’shing.
16y^{2}=24y
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
16y^{2}-24y=0
Ikkala tarafdan 24y ni ayirish.
y\left(16y-24\right)=0
y omili.
y=0 y=\frac{3}{2}
Tenglamani yechish uchun y=0 va 16y-24=0 ni yeching.
16y^{2}=24y-0
0 hosil qilish uchun 0 va 9 ni ko'paytirish.
16y^{2}+0=24y
0 ni ikki tarafga qo’shing.
16y^{2}=24y
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
16y^{2}-24y=0
Ikkala tarafdan 24y ni ayirish.
y=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 16}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 16 ni a, -24 ni b va 0 ni c bilan almashtiring.
y=\frac{-\left(-24\right)±24}{2\times 16}
\left(-24\right)^{2} ning kvadrat ildizini chiqarish.
y=\frac{24±24}{2\times 16}
-24 ning teskarisi 24 ga teng.
y=\frac{24±24}{32}
2 ni 16 marotabaga ko'paytirish.
y=\frac{48}{32}
y=\frac{24±24}{32} tenglamasini yeching, bunda ± musbat. 24 ni 24 ga qo'shish.
y=\frac{3}{2}
\frac{48}{32} ulushini 16 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y=\frac{0}{32}
y=\frac{24±24}{32} tenglamasini yeching, bunda ± manfiy. 24 dan 24 ni ayirish.
y=0
0 ni 32 ga bo'lish.
y=\frac{3}{2} y=0
Tenglama yechildi.
16y^{2}=24y-0
0 hosil qilish uchun 0 va 9 ni ko'paytirish.
16y^{2}-24y=-0
Ikkala tarafdan 24y ni ayirish.
16y^{2}-24y=0
0 hosil qilish uchun -1 va 0 ni ko'paytirish.
\frac{16y^{2}-24y}{16}=\frac{0}{16}
Ikki tarafini 16 ga bo‘ling.
y^{2}+\left(-\frac{24}{16}\right)y=\frac{0}{16}
16 ga bo'lish 16 ga ko'paytirishni bekor qiladi.
y^{2}-\frac{3}{2}y=\frac{0}{16}
\frac{-24}{16} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y^{2}-\frac{3}{2}y=0
0 ni 16 ga bo'lish.
y^{2}-\frac{3}{2}y+\left(-\frac{3}{4}\right)^{2}=\left(-\frac{3}{4}\right)^{2}
-\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{4} olish uchun. Keyin, -\frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-\frac{3}{2}y+\frac{9}{16}=\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{4} kvadratini chiqarish.
\left(y-\frac{3}{4}\right)^{2}=\frac{9}{16}
y^{2}-\frac{3}{2}y+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{3}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{3}{4}=\frac{3}{4} y-\frac{3}{4}=-\frac{3}{4}
Qisqartirish.
y=\frac{3}{2} y=0
\frac{3}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}