x uchun yechish
x=\frac{3x_{1000}}{400}-\frac{5}{2}
x_1000 uchun yechish
x_{1000}=\frac{400x+1000}{3}
Grafik
Baham ko'rish
Klipbordga nusxa olish
15x_{1000}+2000\left(20-x\right)=45000
2000 hosil qilish uchun 2 va 1000 ni ko'paytirish.
15x_{1000}+40000-2000x=45000
2000 ga 20-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
40000-2000x=45000-15x_{1000}
Ikkala tarafdan 15x_{1000} ni ayirish.
-2000x=45000-15x_{1000}-40000
Ikkala tarafdan 40000 ni ayirish.
-2000x=5000-15x_{1000}
5000 olish uchun 45000 dan 40000 ni ayirish.
\frac{-2000x}{-2000}=\frac{5000-15x_{1000}}{-2000}
Ikki tarafini -2000 ga bo‘ling.
x=\frac{5000-15x_{1000}}{-2000}
-2000 ga bo'lish -2000 ga ko'paytirishni bekor qiladi.
x=\frac{3x_{1000}}{400}-\frac{5}{2}
5000-15x_{1000} ni -2000 ga bo'lish.
15x_{1000}+2000\left(20-x\right)=45000
2000 hosil qilish uchun 2 va 1000 ni ko'paytirish.
15x_{1000}+40000-2000x=45000
2000 ga 20-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
15x_{1000}-2000x=45000-40000
Ikkala tarafdan 40000 ni ayirish.
15x_{1000}-2000x=5000
5000 olish uchun 45000 dan 40000 ni ayirish.
15x_{1000}=5000+2000x
2000x ni ikki tarafga qo’shing.
15x_{1000}=2000x+5000
Tenglama standart shaklda.
\frac{15x_{1000}}{15}=\frac{2000x+5000}{15}
Ikki tarafini 15 ga bo‘ling.
x_{1000}=\frac{2000x+5000}{15}
15 ga bo'lish 15 ga ko'paytirishni bekor qiladi.
x_{1000}=\frac{400x+1000}{3}
5000+2000x ni 15 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}