x uchun yechish
x = -\frac{34}{25} = -1\frac{9}{25} = -1,36
Grafik
Baham ko'rish
Klipbordga nusxa olish
136\times 10^{-2}x=-x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
136\times \frac{1}{100}x=-x^{2}
-2 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100} ni qiymatni oling.
\frac{34}{25}x=-x^{2}
\frac{34}{25} hosil qilish uchun 136 va \frac{1}{100} ni ko'paytirish.
\frac{34}{25}x+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
x\left(\frac{34}{25}+x\right)=0
x omili.
x=0 x=-\frac{34}{25}
Tenglamani yechish uchun x=0 va \frac{34}{25}+x=0 ni yeching.
x=-\frac{34}{25}
x qiymati 0 teng bo‘lmaydi.
136\times 10^{-2}x=-x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
136\times \frac{1}{100}x=-x^{2}
-2 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100} ni qiymatni oling.
\frac{34}{25}x=-x^{2}
\frac{34}{25} hosil qilish uchun 136 va \frac{1}{100} ni ko'paytirish.
\frac{34}{25}x+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
x^{2}+\frac{34}{25}x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\frac{34}{25}±\sqrt{\left(\frac{34}{25}\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, \frac{34}{25} ni b va 0 ni c bilan almashtiring.
x=\frac{-\frac{34}{25}±\frac{34}{25}}{2}
\left(\frac{34}{25}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{0}{2}
x=\frac{-\frac{34}{25}±\frac{34}{25}}{2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{34}{25} ni \frac{34}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=0
0 ni 2 ga bo'lish.
x=-\frac{\frac{68}{25}}{2}
x=\frac{-\frac{34}{25}±\frac{34}{25}}{2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{34}{25} ni -\frac{34}{25} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=-\frac{34}{25}
-\frac{68}{25} ni 2 ga bo'lish.
x=0 x=-\frac{34}{25}
Tenglama yechildi.
x=-\frac{34}{25}
x qiymati 0 teng bo‘lmaydi.
136\times 10^{-2}x=-x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
136\times \frac{1}{100}x=-x^{2}
-2 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100} ni qiymatni oling.
\frac{34}{25}x=-x^{2}
\frac{34}{25} hosil qilish uchun 136 va \frac{1}{100} ni ko'paytirish.
\frac{34}{25}x+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
x^{2}+\frac{34}{25}x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+\frac{34}{25}x+\left(\frac{17}{25}\right)^{2}=\left(\frac{17}{25}\right)^{2}
\frac{34}{25} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{17}{25} olish uchun. Keyin, \frac{17}{25} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{34}{25}x+\frac{289}{625}=\frac{289}{625}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{17}{25} kvadratini chiqarish.
\left(x+\frac{17}{25}\right)^{2}=\frac{289}{625}
x^{2}+\frac{34}{25}x+\frac{289}{625} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{17}{25}\right)^{2}}=\sqrt{\frac{289}{625}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{17}{25}=\frac{17}{25} x+\frac{17}{25}=-\frac{17}{25}
Qisqartirish.
x=0 x=-\frac{34}{25}
Tenglamaning ikkala tarafidan \frac{17}{25} ni ayirish.
x=-\frac{34}{25}
x qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}