Baholash
\frac{27921}{101}\approx 276,445544554
Omil
\frac{3 \cdot 41 \cdot 227}{101} = 276\frac{45}{101} = 276,44554455445547
Viktorina
Arithmetic
5xshash muammolar:
11 \times 25+ { 11 }^{ 2 } \div 1111 \times (25+ { 11 }^{ 2 } ) \div 11
Baham ko'rish
Klipbordga nusxa olish
275+\frac{\frac{11^{2}}{1111}\left(25+11^{2}\right)}{11}
275 hosil qilish uchun 11 va 25 ni ko'paytirish.
275+\frac{\frac{121}{1111}\left(25+11^{2}\right)}{11}
2 daraja ko‘rsatkichini 11 ga hisoblang va 121 ni qiymatni oling.
275+\frac{\frac{11}{101}\left(25+11^{2}\right)}{11}
\frac{121}{1111} ulushini 11 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
275+\frac{\frac{11}{101}\left(25+121\right)}{11}
2 daraja ko‘rsatkichini 11 ga hisoblang va 121 ni qiymatni oling.
275+\frac{\frac{11}{101}\times 146}{11}
146 olish uchun 25 va 121'ni qo'shing.
275+\frac{\frac{11\times 146}{101}}{11}
\frac{11}{101}\times 146 ni yagona kasrga aylantiring.
275+\frac{\frac{1606}{101}}{11}
1606 hosil qilish uchun 11 va 146 ni ko'paytirish.
275+\frac{1606}{101\times 11}
\frac{\frac{1606}{101}}{11} ni yagona kasrga aylantiring.
275+\frac{1606}{1111}
1111 hosil qilish uchun 101 va 11 ni ko'paytirish.
275+\frac{146}{101}
\frac{1606}{1111} ulushini 11 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{27775}{101}+\frac{146}{101}
275 ni \frac{27775}{101} kasrga o‘giring.
\frac{27775+146}{101}
\frac{27775}{101} va \frac{146}{101} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{27921}{101}
27921 olish uchun 27775 va 146'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}