Baholash
\frac{1}{64605000000}\approx 1,547867812 \cdot 10^{-11}
Omil
\frac{1}{3 \cdot 59 \cdot 73 \cdot 2 ^ {6} \cdot 5 ^ {7}} = 1,5478678120888476 \times 10^{-11}
Baham ko'rish
Klipbordga nusxa olish
\frac{1,6\times 10^{-2}\times 10^{-6}}{885\times 10^{-12}\times 1168\times 10^{9}}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. -18 va 16 ni qo‘shib, -2 ni oling.
\frac{1,6\times 10^{-8}}{885\times 10^{-12}\times 1168\times 10^{9}}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. -2 va -6 ni qo‘shib, -8 ni oling.
\frac{1,6\times 10^{-8}}{885\times 10^{-3}\times 1168}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. -12 va 9 ni qo‘shib, -3 ni oling.
\frac{1,6}{885\times 1168\times 10^{5}}
Ayni asosning daraja ko‘rsatkichini bo‘lish uchun suratning darajasini maxraj darajasiga bo‘ling.
\frac{1,6}{1033680\times 10^{5}}
1033680 hosil qilish uchun 885 va 1168 ni ko'paytirish.
\frac{1,6}{1033680\times 100000}
5 daraja ko‘rsatkichini 10 ga hisoblang va 100000 ni qiymatni oling.
\frac{1,6}{103368000000}
103368000000 hosil qilish uchun 1033680 va 100000 ni ko'paytirish.
\frac{16}{1033680000000}
\frac{1,6}{103368000000} kasrini uning surat va maxrajini 10 ga ko‘paytirish bilan kengaytiring.
\frac{1}{64605000000}
\frac{16}{1033680000000} ulushini 16 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}