Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=-12 ab=1\times 32=32
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda x^{2}+ax+bx+32 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-32 -2,-16 -4,-8
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 32-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-32=-33 -2-16=-18 -4-8=-12
Har bir juftlik yigʻindisini hisoblang.
a=-8 b=-4
Yechim – -12 yigʻindisini beruvchi juftlik.
\left(x^{2}-8x\right)+\left(-4x+32\right)
x^{2}-12x+32 ni \left(x^{2}-8x\right)+\left(-4x+32\right) sifatida qaytadan yozish.
x\left(x-8\right)-4\left(x-8\right)
Birinchi guruhda x ni va ikkinchi guruhda -4 ni faktordan chiqaring.
\left(x-8\right)\left(x-4\right)
Distributiv funktsiyasidan foydalangan holda x-8 umumiy terminini chiqaring.
x^{2}-12x+32=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 32}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 32}}{2}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2}
-4 ni 32 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{16}}{2}
144 ni -128 ga qo'shish.
x=\frac{-\left(-12\right)±4}{2}
16 ning kvadrat ildizini chiqarish.
x=\frac{12±4}{2}
-12 ning teskarisi 12 ga teng.
x=\frac{16}{2}
x=\frac{12±4}{2} tenglamasini yeching, bunda ± musbat. 12 ni 4 ga qo'shish.
x=8
16 ni 2 ga bo'lish.
x=\frac{8}{2}
x=\frac{12±4}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 4 ni ayirish.
x=4
8 ni 2 ga bo'lish.
x^{2}-12x+32=\left(x-8\right)\left(x-4\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 8 ga va x_{2} uchun 4 ga bo‘ling.