m uchun yechish
m=-\sqrt{\sqrt{2}-1}\approx -0,643594253
m=\sqrt{\sqrt{2}-1}\approx 0,643594253
Baham ko'rish
Klipbordga nusxa olish
-t^{2}-2t+1=0
m^{2} uchun t ni almashtiring.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 1}}{-2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun -1 ni, b uchun -2 ni va c uchun 1 ni ayiring.
t=\frac{2±2\sqrt{2}}{-2}
Hisoblarni amalga oshiring.
t=-\sqrt{2}-1 t=\sqrt{2}-1
t=\frac{2±2\sqrt{2}}{-2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
m=\sqrt{\sqrt{2}-1} m=-\sqrt{\sqrt{2}-1}
m=t^{2} boʻlganda, yechimlar musbat t uchun m=±\sqrt{t} hisoblanishi orqali olinadi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}