Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1-2\left(x-3\right)\left(x-11\right)=0
-2 hosil qilish uchun -1 va 2 ni ko'paytirish.
1+\left(-2x+6\right)\left(x-11\right)=0
-2 ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1-2x^{2}+28x-66=0
-2x+6 ga x-11 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-65-2x^{2}+28x=0
-65 olish uchun 1 dan 66 ni ayirish.
-2x^{2}+28x-65=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-28±\sqrt{28^{2}-4\left(-2\right)\left(-65\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 28 ni b va -65 ni c bilan almashtiring.
x=\frac{-28±\sqrt{784-4\left(-2\right)\left(-65\right)}}{2\left(-2\right)}
28 kvadratini chiqarish.
x=\frac{-28±\sqrt{784+8\left(-65\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-28±\sqrt{784-520}}{2\left(-2\right)}
8 ni -65 marotabaga ko'paytirish.
x=\frac{-28±\sqrt{264}}{2\left(-2\right)}
784 ni -520 ga qo'shish.
x=\frac{-28±2\sqrt{66}}{2\left(-2\right)}
264 ning kvadrat ildizini chiqarish.
x=\frac{-28±2\sqrt{66}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{2\sqrt{66}-28}{-4}
x=\frac{-28±2\sqrt{66}}{-4} tenglamasini yeching, bunda ± musbat. -28 ni 2\sqrt{66} ga qo'shish.
x=-\frac{\sqrt{66}}{2}+7
-28+2\sqrt{66} ni -4 ga bo'lish.
x=\frac{-2\sqrt{66}-28}{-4}
x=\frac{-28±2\sqrt{66}}{-4} tenglamasini yeching, bunda ± manfiy. -28 dan 2\sqrt{66} ni ayirish.
x=\frac{\sqrt{66}}{2}+7
-28-2\sqrt{66} ni -4 ga bo'lish.
x=-\frac{\sqrt{66}}{2}+7 x=\frac{\sqrt{66}}{2}+7
Tenglama yechildi.
1-2\left(x-3\right)\left(x-11\right)=0
-2 hosil qilish uchun -1 va 2 ni ko'paytirish.
1+\left(-2x+6\right)\left(x-11\right)=0
-2 ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1-2x^{2}+28x-66=0
-2x+6 ga x-11 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-65-2x^{2}+28x=0
-65 olish uchun 1 dan 66 ni ayirish.
-2x^{2}+28x=65
65 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{-2x^{2}+28x}{-2}=\frac{65}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{28}{-2}x=\frac{65}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-14x=\frac{65}{-2}
28 ni -2 ga bo'lish.
x^{2}-14x=-\frac{65}{2}
65 ni -2 ga bo'lish.
x^{2}-14x+\left(-7\right)^{2}=-\frac{65}{2}+\left(-7\right)^{2}
-14 ni bo‘lish, x shartining koeffitsienti, 2 ga -7 olish uchun. Keyin, -7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-14x+49=-\frac{65}{2}+49
-7 kvadratini chiqarish.
x^{2}-14x+49=\frac{33}{2}
-\frac{65}{2} ni 49 ga qo'shish.
\left(x-7\right)^{2}=\frac{33}{2}
x^{2}-14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-7\right)^{2}}=\sqrt{\frac{33}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-7=\frac{\sqrt{66}}{2} x-7=-\frac{\sqrt{66}}{2}
Qisqartirish.
x=\frac{\sqrt{66}}{2}+7 x=-\frac{\sqrt{66}}{2}+7
7 ni tenglamaning ikkala tarafiga qo'shish.