y uchun yechish
y=\frac{135}{142}\approx 0,950704225
Grafik
Baham ko'rish
Klipbordga nusxa olish
12\left(1\times 9+1\right)y+42y-20y=27\left(1\times 4+1\right)
Tenglamaning ikkala tarafini 108 ga, 9,18,27,4 ning eng kichik karralisiga ko‘paytiring.
12\left(9+1\right)y+42y-20y=27\left(1\times 4+1\right)
9 hosil qilish uchun 1 va 9 ni ko'paytirish.
12\times 10y+42y-20y=27\left(1\times 4+1\right)
10 olish uchun 9 va 1'ni qo'shing.
120y+42y-20y=27\left(1\times 4+1\right)
120 hosil qilish uchun 12 va 10 ni ko'paytirish.
162y-20y=27\left(1\times 4+1\right)
162y ni olish uchun 120y va 42y ni birlashtirish.
142y=27\left(1\times 4+1\right)
142y ni olish uchun 162y va -20y ni birlashtirish.
142y=27\left(4+1\right)
4 hosil qilish uchun 1 va 4 ni ko'paytirish.
142y=27\times 5
5 olish uchun 4 va 1'ni qo'shing.
142y=135
135 hosil qilish uchun 27 va 5 ni ko'paytirish.
y=\frac{135}{142}
Ikki tarafini 142 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}