x uchun yechish
x=\frac{1}{4}=0,25
Grafik
Baham ko'rish
Klipbordga nusxa olish
8x\times \frac{1}{8}+8x\times \frac{1}{8}=8\times \frac{1}{16}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 8x ga, 8,x ning eng kichik karralisiga ko‘paytiring.
x+8x\times \frac{1}{8}=8\times \frac{1}{16}
8 va 8 ni qisqartiring.
x+x=8\times \frac{1}{16}
8 va 8 ni qisqartiring.
2x=8\times \frac{1}{16}
2x ni olish uchun x va x ni birlashtirish.
2x=\frac{8}{16}
\frac{8}{16} hosil qilish uchun 8 va \frac{1}{16} ni ko'paytirish.
2x=\frac{1}{2}
\frac{8}{16} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\frac{1}{2}}{2}
Ikki tarafini 2 ga bo‘ling.
x=\frac{1}{2\times 2}
\frac{\frac{1}{2}}{2} ni yagona kasrga aylantiring.
x=\frac{1}{4}
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}