Baholash
\frac{47\sqrt{10}}{12265625}\approx 0,000012117
Viktorina
Arithmetic
5xshash muammolar:
1 \div 628 { 5 }^{ -9 } \sqrt{ 6 { 4700 }^{ 2 } +4 { 4700 }^{ 2 } }
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{628}\times \frac{1}{1953125}\sqrt{6\times 4700^{2}+4\times 4700^{2}}
-9 daraja ko‘rsatkichini 5 ga hisoblang va \frac{1}{1953125} ni qiymatni oling.
\frac{1}{1226562500}\sqrt{6\times 4700^{2}+4\times 4700^{2}}
\frac{1}{1226562500} hosil qilish uchun \frac{1}{628} va \frac{1}{1953125} ni ko'paytirish.
\frac{1}{1226562500}\sqrt{6\times 22090000+4\times 4700^{2}}
2 daraja ko‘rsatkichini 4700 ga hisoblang va 22090000 ni qiymatni oling.
\frac{1}{1226562500}\sqrt{132540000+4\times 4700^{2}}
132540000 hosil qilish uchun 6 va 22090000 ni ko'paytirish.
\frac{1}{1226562500}\sqrt{132540000+4\times 22090000}
2 daraja ko‘rsatkichini 4700 ga hisoblang va 22090000 ni qiymatni oling.
\frac{1}{1226562500}\sqrt{132540000+88360000}
88360000 hosil qilish uchun 4 va 22090000 ni ko'paytirish.
\frac{1}{1226562500}\sqrt{220900000}
220900000 olish uchun 132540000 va 88360000'ni qo'shing.
\frac{1}{1226562500}\times 4700\sqrt{10}
Faktor: 220900000=4700^{2}\times 10. \sqrt{4700^{2}\times 10} koʻpaytmasining kvadrat ildizini \sqrt{4700^{2}}\sqrt{10} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 4700^{2} ning kvadrat ildizini chiqarish.
\frac{47}{12265625}\sqrt{10}
\frac{47}{12265625} hosil qilish uchun \frac{1}{1226562500} va 4700 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}