Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-8x+15=1
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-8x+15-1=0
Ikkala tarafdan 1 ni ayirish.
x^{2}-8x+14=0
14 olish uchun 15 dan 1 ni ayirish.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 14}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 14}}{2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-56}}{2}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{8}}{2}
64 ni -56 ga qo'shish.
x=\frac{-\left(-8\right)±2\sqrt{2}}{2}
8 ning kvadrat ildizini chiqarish.
x=\frac{8±2\sqrt{2}}{2}
-8 ning teskarisi 8 ga teng.
x=\frac{2\sqrt{2}+8}{2}
x=\frac{8±2\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 8 ni 2\sqrt{2} ga qo'shish.
x=\sqrt{2}+4
2\sqrt{2}+8 ni 2 ga bo'lish.
x=\frac{8-2\sqrt{2}}{2}
x=\frac{8±2\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 2\sqrt{2} ni ayirish.
x=4-\sqrt{2}
8-2\sqrt{2} ni 2 ga bo'lish.
x=\sqrt{2}+4 x=4-\sqrt{2}
Tenglama yechildi.
x^{2}-8x+15=1
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-8x=1-15
Ikkala tarafdan 15 ni ayirish.
x^{2}-8x=-14
-14 olish uchun 1 dan 15 ni ayirish.
x^{2}-8x+\left(-4\right)^{2}=-14+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-8x+16=-14+16
-4 kvadratini chiqarish.
x^{2}-8x+16=2
-14 ni 16 ga qo'shish.
\left(x-4\right)^{2}=2
x^{2}-8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-4\right)^{2}}=\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-4=\sqrt{2} x-4=-\sqrt{2}
Qisqartirish.
x=\sqrt{2}+4 x=4-\sqrt{2}
4 ni tenglamaning ikkala tarafiga qo'shish.