x uchun yechish
x=\sqrt{2}+2\approx 3,414213562
x=2-\sqrt{2}\approx 0,585786438
Grafik
Baham ko'rish
Klipbordga nusxa olish
-\frac{1}{2}x^{2}+2x=1
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{1}{2}x^{2}+2x-1=0
Ikkala tarafdan 1 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1}{2}\right)\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{2} ni a, 2 ni b va -1 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-\frac{1}{2}\right)\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+2\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
-4 ni -\frac{1}{2} marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4-2}}{2\left(-\frac{1}{2}\right)}
2 ni -1 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{2}}{2\left(-\frac{1}{2}\right)}
4 ni -2 ga qo'shish.
x=\frac{-2±\sqrt{2}}{-1}
2 ni -\frac{1}{2} marotabaga ko'paytirish.
x=\frac{\sqrt{2}-2}{-1}
x=\frac{-2±\sqrt{2}}{-1} tenglamasini yeching, bunda ± musbat. -2 ni \sqrt{2} ga qo'shish.
x=2-\sqrt{2}
-2+\sqrt{2} ni -1 ga bo'lish.
x=\frac{-\sqrt{2}-2}{-1}
x=\frac{-2±\sqrt{2}}{-1} tenglamasini yeching, bunda ± manfiy. -2 dan \sqrt{2} ni ayirish.
x=\sqrt{2}+2
-2-\sqrt{2} ni -1 ga bo'lish.
x=2-\sqrt{2} x=\sqrt{2}+2
Tenglama yechildi.
-\frac{1}{2}x^{2}+2x=1
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{-\frac{1}{2}x^{2}+2x}{-\frac{1}{2}}=\frac{1}{-\frac{1}{2}}
Ikkala tarafini -2 ga ko‘paytiring.
x^{2}+\frac{2}{-\frac{1}{2}}x=\frac{1}{-\frac{1}{2}}
-\frac{1}{2} ga bo'lish -\frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}-4x=\frac{1}{-\frac{1}{2}}
2 ni -\frac{1}{2} ga bo'lish 2 ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}-4x=-2
1 ni -\frac{1}{2} ga bo'lish 1 ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}-4x+\left(-2\right)^{2}=-2+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=-2+4
-2 kvadratini chiqarish.
x^{2}-4x+4=2
-2 ni 4 ga qo'shish.
\left(x-2\right)^{2}=2
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=\sqrt{2} x-2=-\sqrt{2}
Qisqartirish.
x=\sqrt{2}+2 x=2-\sqrt{2}
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}