Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}-4=11\times 3
Ikki tarafini 3 va teskari kasri \frac{1}{3} ga ko‘paytiring.
6x^{2}-4=33
33 hosil qilish uchun 11 va 3 ni ko'paytirish.
6x^{2}=33+4
4 ni ikki tarafga qo’shing.
6x^{2}=37
37 olish uchun 33 va 4'ni qo'shing.
x^{2}=\frac{37}{6}
Ikki tarafini 6 ga bo‘ling.
x=\frac{\sqrt{222}}{6} x=-\frac{\sqrt{222}}{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
6x^{2}-4=11\times 3
Ikki tarafini 3 va teskari kasri \frac{1}{3} ga ko‘paytiring.
6x^{2}-4=33
33 hosil qilish uchun 11 va 3 ni ko'paytirish.
6x^{2}-4-33=0
Ikkala tarafdan 33 ni ayirish.
6x^{2}-37=0
-37 olish uchun -4 dan 33 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-37\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 0 ni b va -37 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 6\left(-37\right)}}{2\times 6}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-24\left(-37\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{0±\sqrt{888}}{2\times 6}
-24 ni -37 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{222}}{2\times 6}
888 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{222}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{\sqrt{222}}{6}
x=\frac{0±2\sqrt{222}}{12} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{222}}{6}
x=\frac{0±2\sqrt{222}}{12} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{222}}{6} x=-\frac{\sqrt{222}}{6}
Tenglama yechildi.