Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{\left(x-5\right)\left(x+5\right)}+\frac{6}{5+x}
Faktor: x^{2}-25.
\frac{1}{\left(x-5\right)\left(x+5\right)}+\frac{6\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-5\right)\left(x+5\right) va 5+x ning eng kichik umumiy karralisi \left(x-5\right)\left(x+5\right). \frac{6}{5+x} ni \frac{x-5}{x-5} marotabaga ko'paytirish.
\frac{1+6\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}
\frac{1}{\left(x-5\right)\left(x+5\right)} va \frac{6\left(x-5\right)}{\left(x-5\right)\left(x+5\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1+6x-30}{\left(x-5\right)\left(x+5\right)}
1+6\left(x-5\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-29+6x}{\left(x-5\right)\left(x+5\right)}
1+6x-30 kabi iboralarga o‘xshab birlashtiring.
\frac{-29+6x}{x^{2}-25}
\left(x-5\right)\left(x+5\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(x-5\right)\left(x+5\right)}+\frac{6}{5+x})
Faktor: x^{2}-25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(x-5\right)\left(x+5\right)}+\frac{6\left(x-5\right)}{\left(x-5\right)\left(x+5\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-5\right)\left(x+5\right) va 5+x ning eng kichik umumiy karralisi \left(x-5\right)\left(x+5\right). \frac{6}{5+x} ni \frac{x-5}{x-5} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+6\left(x-5\right)}{\left(x-5\right)\left(x+5\right)})
\frac{1}{\left(x-5\right)\left(x+5\right)} va \frac{6\left(x-5\right)}{\left(x-5\right)\left(x+5\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+6x-30}{\left(x-5\right)\left(x+5\right)})
1+6\left(x-5\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-29+6x}{\left(x-5\right)\left(x+5\right)})
1+6x-30 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-29+6x}{x^{2}-25})
Hisoblang: \left(x-5\right)\left(x+5\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 5 kvadratini chiqarish.
\frac{\left(x^{2}-25\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}-29)-\left(6x^{1}-29\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-25)}{\left(x^{2}-25\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}-25\right)\times 6x^{1-1}-\left(6x^{1}-29\right)\times 2x^{2-1}}{\left(x^{2}-25\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}-25\right)\times 6x^{0}-\left(6x^{1}-29\right)\times 2x^{1}}{\left(x^{2}-25\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{x^{2}\times 6x^{0}-25\times 6x^{0}-\left(6x^{1}\times 2x^{1}-29\times 2x^{1}\right)}{\left(x^{2}-25\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{6x^{2}-25\times 6x^{0}-\left(6\times 2x^{1+1}-29\times 2x^{1}\right)}{\left(x^{2}-25\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{6x^{2}-150x^{0}-\left(12x^{2}-58x^{1}\right)}{\left(x^{2}-25\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{6x^{2}-150x^{0}-12x^{2}-\left(-58x^{1}\right)}{\left(x^{2}-25\right)^{2}}
Keraksiz qavslarni olib tashlash.
\frac{\left(6-12\right)x^{2}-150x^{0}-\left(-58x^{1}\right)}{\left(x^{2}-25\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-6x^{2}-150x^{0}-\left(-58x^{1}\right)}{\left(x^{2}-25\right)^{2}}
6 dan 12 ni ayirish.
\frac{-6x^{2}-150x^{0}-\left(-58x\right)}{\left(x^{2}-25\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-6x^{2}-150-\left(-58x\right)}{\left(x^{2}-25\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.