Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1+x^{2}-21x=0
0 hosil qilish uchun 0 va 50565 ni ko'paytirish.
x^{2}-21x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -21 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-21\right)±\sqrt{441-4}}{2}
-21 kvadratini chiqarish.
x=\frac{-\left(-21\right)±\sqrt{437}}{2}
441 ni -4 ga qo'shish.
x=\frac{21±\sqrt{437}}{2}
-21 ning teskarisi 21 ga teng.
x=\frac{\sqrt{437}+21}{2}
x=\frac{21±\sqrt{437}}{2} tenglamasini yeching, bunda ± musbat. 21 ni \sqrt{437} ga qo'shish.
x=\frac{21-\sqrt{437}}{2}
x=\frac{21±\sqrt{437}}{2} tenglamasini yeching, bunda ± manfiy. 21 dan \sqrt{437} ni ayirish.
x=\frac{\sqrt{437}+21}{2} x=\frac{21-\sqrt{437}}{2}
Tenglama yechildi.
1+x^{2}-21x=0
0 hosil qilish uchun 0 va 50565 ni ko'paytirish.
x^{2}-21x=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-1+\left(-\frac{21}{2}\right)^{2}
-21 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{21}{2} olish uchun. Keyin, -\frac{21}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-21x+\frac{441}{4}=-1+\frac{441}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{21}{2} kvadratini chiqarish.
x^{2}-21x+\frac{441}{4}=\frac{437}{4}
-1 ni \frac{441}{4} ga qo'shish.
\left(x-\frac{21}{2}\right)^{2}=\frac{437}{4}
x^{2}-21x+\frac{441}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{437}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{21}{2}=\frac{\sqrt{437}}{2} x-\frac{21}{2}=-\frac{\sqrt{437}}{2}
Qisqartirish.
x=\frac{\sqrt{437}+21}{2} x=\frac{21-\sqrt{437}}{2}
\frac{21}{2} ni tenglamaning ikkala tarafiga qo'shish.