Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1+x+x+x^{2}=36
x ga 1+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1+2x+x^{2}=36
2x ni olish uchun x va x ni birlashtirish.
1+2x+x^{2}-36=0
Ikkala tarafdan 36 ni ayirish.
-35+2x+x^{2}=0
-35 olish uchun 1 dan 36 ni ayirish.
x^{2}+2x-35=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\left(-35\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -35 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-35\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+140}}{2}
-4 ni -35 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{144}}{2}
4 ni 140 ga qo'shish.
x=\frac{-2±12}{2}
144 ning kvadrat ildizini chiqarish.
x=\frac{10}{2}
x=\frac{-2±12}{2} tenglamasini yeching, bunda ± musbat. -2 ni 12 ga qo'shish.
x=5
10 ni 2 ga bo'lish.
x=-\frac{14}{2}
x=\frac{-2±12}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 12 ni ayirish.
x=-7
-14 ni 2 ga bo'lish.
x=5 x=-7
Tenglama yechildi.
1+x+x+x^{2}=36
x ga 1+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1+2x+x^{2}=36
2x ni olish uchun x va x ni birlashtirish.
2x+x^{2}=36-1
Ikkala tarafdan 1 ni ayirish.
2x+x^{2}=35
35 olish uchun 36 dan 1 ni ayirish.
x^{2}+2x=35
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+2x+1^{2}=35+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=35+1
1 kvadratini chiqarish.
x^{2}+2x+1=36
35 ni 1 ga qo'shish.
\left(x+1\right)^{2}=36
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{36}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=6 x+1=-6
Qisqartirish.
x=5 x=-7
Tenglamaning ikkala tarafidan 1 ni ayirish.