Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

0\times 4\times 10x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
x qiymati -10,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 10x\left(x+10\right) ga, 10,x,x+10 ning eng kichik karralisiga ko‘paytiring.
0\times 10x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
0 hosil qilish uchun 0 va 4 ni ko'paytirish.
0x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
0 hosil qilish uchun 0 va 10 ni ko'paytirish.
0+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
0+\left(x^{2}+10x\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
x ga x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
0+20x^{2}+200x=\left(10x+100\right)\times 120+10x\times 120
x^{2}+10x ga 20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x^{2}+200x=\left(10x+100\right)\times 120+10x\times 120
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
20x^{2}+200x=1200x+12000+10x\times 120
10x+100 ga 120 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x^{2}+200x=1200x+12000+1200x
1200 hosil qilish uchun 10 va 120 ni ko'paytirish.
20x^{2}+200x=2400x+12000
2400x ni olish uchun 1200x va 1200x ni birlashtirish.
20x^{2}+200x-2400x=12000
Ikkala tarafdan 2400x ni ayirish.
20x^{2}-2200x=12000
-2200x ni olish uchun 200x va -2400x ni birlashtirish.
20x^{2}-2200x-12000=0
Ikkala tarafdan 12000 ni ayirish.
x=\frac{-\left(-2200\right)±\sqrt{\left(-2200\right)^{2}-4\times 20\left(-12000\right)}}{2\times 20}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 20 ni a, -2200 ni b va -12000 ni c bilan almashtiring.
x=\frac{-\left(-2200\right)±\sqrt{4840000-4\times 20\left(-12000\right)}}{2\times 20}
-2200 kvadratini chiqarish.
x=\frac{-\left(-2200\right)±\sqrt{4840000-80\left(-12000\right)}}{2\times 20}
-4 ni 20 marotabaga ko'paytirish.
x=\frac{-\left(-2200\right)±\sqrt{4840000+960000}}{2\times 20}
-80 ni -12000 marotabaga ko'paytirish.
x=\frac{-\left(-2200\right)±\sqrt{5800000}}{2\times 20}
4840000 ni 960000 ga qo'shish.
x=\frac{-\left(-2200\right)±200\sqrt{145}}{2\times 20}
5800000 ning kvadrat ildizini chiqarish.
x=\frac{2200±200\sqrt{145}}{2\times 20}
-2200 ning teskarisi 2200 ga teng.
x=\frac{2200±200\sqrt{145}}{40}
2 ni 20 marotabaga ko'paytirish.
x=\frac{200\sqrt{145}+2200}{40}
x=\frac{2200±200\sqrt{145}}{40} tenglamasini yeching, bunda ± musbat. 2200 ni 200\sqrt{145} ga qo'shish.
x=5\sqrt{145}+55
2200+200\sqrt{145} ni 40 ga bo'lish.
x=\frac{2200-200\sqrt{145}}{40}
x=\frac{2200±200\sqrt{145}}{40} tenglamasini yeching, bunda ± manfiy. 2200 dan 200\sqrt{145} ni ayirish.
x=55-5\sqrt{145}
2200-200\sqrt{145} ni 40 ga bo'lish.
x=5\sqrt{145}+55 x=55-5\sqrt{145}
Tenglama yechildi.
0\times 4\times 10x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
x qiymati -10,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 10x\left(x+10\right) ga, 10,x,x+10 ning eng kichik karralisiga ko‘paytiring.
0\times 10x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
0 hosil qilish uchun 0 va 4 ni ko'paytirish.
0x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
0 hosil qilish uchun 0 va 10 ni ko'paytirish.
0+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
0+\left(x^{2}+10x\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
x ga x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
0+20x^{2}+200x=\left(10x+100\right)\times 120+10x\times 120
x^{2}+10x ga 20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x^{2}+200x=\left(10x+100\right)\times 120+10x\times 120
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
20x^{2}+200x=1200x+12000+10x\times 120
10x+100 ga 120 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x^{2}+200x=1200x+12000+1200x
1200 hosil qilish uchun 10 va 120 ni ko'paytirish.
20x^{2}+200x=2400x+12000
2400x ni olish uchun 1200x va 1200x ni birlashtirish.
20x^{2}+200x-2400x=12000
Ikkala tarafdan 2400x ni ayirish.
20x^{2}-2200x=12000
-2200x ni olish uchun 200x va -2400x ni birlashtirish.
\frac{20x^{2}-2200x}{20}=\frac{12000}{20}
Ikki tarafini 20 ga bo‘ling.
x^{2}+\left(-\frac{2200}{20}\right)x=\frac{12000}{20}
20 ga bo'lish 20 ga ko'paytirishni bekor qiladi.
x^{2}-110x=\frac{12000}{20}
-2200 ni 20 ga bo'lish.
x^{2}-110x=600
12000 ni 20 ga bo'lish.
x^{2}-110x+\left(-55\right)^{2}=600+\left(-55\right)^{2}
-110 ni bo‘lish, x shartining koeffitsienti, 2 ga -55 olish uchun. Keyin, -55 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-110x+3025=600+3025
-55 kvadratini chiqarish.
x^{2}-110x+3025=3625
600 ni 3025 ga qo'shish.
\left(x-55\right)^{2}=3625
x^{2}-110x+3025 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-55\right)^{2}}=\sqrt{3625}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-55=5\sqrt{145} x-55=-5\sqrt{145}
Qisqartirish.
x=5\sqrt{145}+55 x=55-5\sqrt{145}
55 ni tenglamaning ikkala tarafiga qo'shish.