x uchun yechish
x=\frac{1000\sqrt{249}\left(2y-1\right)}{y}
y\neq 0
y uchun yechish
y=\frac{249000}{-\sqrt{249}x+498000}
x\neq 2000\sqrt{249}
Grafik
Viktorina
Linear Equation
01=2y( \frac{ 1-01 }{ 1+01 } - \frac{ x }{ \sqrt{ 996 \times { 10 }^{ 6 } } } )-1
Baham ko'rish
Klipbordga nusxa olish
0=2y\left(\frac{1-0\times 1}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
0 hosil qilish uchun 0 va 1 ni ko'paytirish.
0=2y\left(\frac{1-0}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
0 hosil qilish uchun 0 va 1 ni ko'paytirish.
0=2y\left(\frac{1}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
1 olish uchun 1 dan 0 ni ayirish.
0=2y\left(\frac{1}{1+0}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
0 hosil qilish uchun 0 va 1 ni ko'paytirish.
0=2y\left(\frac{1}{1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
1 olish uchun 1 va 0'ni qo'shing.
0=2y\left(1-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
0=2y\left(1-\frac{x}{\sqrt{996\times 1000000}}\right)-1
6 daraja ko‘rsatkichini 10 ga hisoblang va 1000000 ni qiymatni oling.
0=2y\left(1-\frac{x}{\sqrt{996000000}}\right)-1
996000000 hosil qilish uchun 996 va 1000000 ni ko'paytirish.
0=2y\left(1-\frac{x}{2000\sqrt{249}}\right)-1
Faktor: 996000000=2000^{2}\times 249. \sqrt{2000^{2}\times 249} koʻpaytmasining kvadrat ildizini \sqrt{2000^{2}}\sqrt{249} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2000^{2} ning kvadrat ildizini chiqarish.
0=2y\left(1-\frac{x\sqrt{249}}{2000\left(\sqrt{249}\right)^{2}}\right)-1
\frac{x}{2000\sqrt{249}} maxrajini \sqrt{249} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
0=2y\left(1-\frac{x\sqrt{249}}{2000\times 249}\right)-1
\sqrt{249} kvadrati – 249.
0=2y\left(1-\frac{x\sqrt{249}}{498000}\right)-1
498000 hosil qilish uchun 2000 va 249 ni ko'paytirish.
0=2y+2y\left(-\frac{x\sqrt{249}}{498000}\right)-1
2y ga 1-\frac{x\sqrt{249}}{498000} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
0=2y+\frac{x\sqrt{249}}{-249000}y-1
2 va 498000 ichida eng katta umumiy 498000 faktorini bekor qiling.
0=2y+\frac{x\sqrt{249}y}{-249000}-1
\frac{x\sqrt{249}}{-249000}y ni yagona kasrga aylantiring.
2y+\frac{x\sqrt{249}y}{-249000}-1=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{x\sqrt{249}y}{-249000}-1=-2y
Ikkala tarafdan 2y ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{x\sqrt{249}y}{-249000}=-2y+1
1 ni ikki tarafga qo’shing.
x\sqrt{249}y=498000y-249000
Tenglamaning ikkala tarafini -249000 ga ko'paytirish.
\sqrt{249}yx=498000y-249000
Tenglama standart shaklda.
\frac{\sqrt{249}yx}{\sqrt{249}y}=\frac{498000y-249000}{\sqrt{249}y}
Ikki tarafini \sqrt{249}y ga bo‘ling.
x=\frac{498000y-249000}{\sqrt{249}y}
\sqrt{249}y ga bo'lish \sqrt{249}y ga ko'paytirishni bekor qiladi.
x=\frac{1000\sqrt{249}\left(2y-1\right)}{y}
498000y-249000 ni \sqrt{249}y ga bo'lish.
0=2y\left(\frac{1-0\times 1}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
0 hosil qilish uchun 0 va 1 ni ko'paytirish.
0=2y\left(\frac{1-0}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
0 hosil qilish uchun 0 va 1 ni ko'paytirish.
0=2y\left(\frac{1}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
1 olish uchun 1 dan 0 ni ayirish.
0=2y\left(\frac{1}{1+0}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
0 hosil qilish uchun 0 va 1 ni ko'paytirish.
0=2y\left(\frac{1}{1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
1 olish uchun 1 va 0'ni qo'shing.
0=2y\left(1-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
0=2y\left(1-\frac{x}{\sqrt{996\times 1000000}}\right)-1
6 daraja ko‘rsatkichini 10 ga hisoblang va 1000000 ni qiymatni oling.
0=2y\left(1-\frac{x}{\sqrt{996000000}}\right)-1
996000000 hosil qilish uchun 996 va 1000000 ni ko'paytirish.
0=2y\left(1-\frac{x}{2000\sqrt{249}}\right)-1
Faktor: 996000000=2000^{2}\times 249. \sqrt{2000^{2}\times 249} koʻpaytmasining kvadrat ildizini \sqrt{2000^{2}}\sqrt{249} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2000^{2} ning kvadrat ildizini chiqarish.
0=2y\left(1-\frac{x\sqrt{249}}{2000\left(\sqrt{249}\right)^{2}}\right)-1
\frac{x}{2000\sqrt{249}} maxrajini \sqrt{249} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
0=2y\left(1-\frac{x\sqrt{249}}{2000\times 249}\right)-1
\sqrt{249} kvadrati – 249.
0=2y\left(1-\frac{x\sqrt{249}}{498000}\right)-1
498000 hosil qilish uchun 2000 va 249 ni ko'paytirish.
0=2y+2y\left(-\frac{x\sqrt{249}}{498000}\right)-1
2y ga 1-\frac{x\sqrt{249}}{498000} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
0=2y+\frac{x\sqrt{249}}{-249000}y-1
2 va 498000 ichida eng katta umumiy 498000 faktorini bekor qiling.
0=2y+\frac{x\sqrt{249}y}{-249000}-1
\frac{x\sqrt{249}}{-249000}y ni yagona kasrga aylantiring.
2y+\frac{x\sqrt{249}y}{-249000}-1=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2y+\frac{x\sqrt{249}y}{-249000}=1
1 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-498000y+x\sqrt{249}y=-249000
Tenglamaning ikkala tarafini -249000 ga ko'paytirish.
\left(-498000+x\sqrt{249}\right)y=-249000
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(\sqrt{249}x-498000\right)y=-249000
Tenglama standart shaklda.
\frac{\left(\sqrt{249}x-498000\right)y}{\sqrt{249}x-498000}=-\frac{249000}{\sqrt{249}x-498000}
Ikki tarafini -498000+x\sqrt{249} ga bo‘ling.
y=-\frac{249000}{\sqrt{249}x-498000}
-498000+x\sqrt{249} ga bo'lish -498000+x\sqrt{249} ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}