x uchun yechish
x=\frac{50}{20833331}\approx 0,0000024
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
0\times 3=100x-41666662x^{2}
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
0=100x-41666662x^{2}
0 hosil qilish uchun 0 va 3 ni ko'paytirish.
100x-41666662x^{2}=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x\left(100-41666662x\right)=0
x omili.
x=0 x=\frac{50}{20833331}
Tenglamani yechish uchun x=0 va 100-41666662x=0 ni yeching.
0\times 3=100x-41666662x^{2}
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
0=100x-41666662x^{2}
0 hosil qilish uchun 0 va 3 ni ko'paytirish.
100x-41666662x^{2}=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-41666662x^{2}+100x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-100±\sqrt{100^{2}}}{2\left(-41666662\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -41666662 ni a, 100 ni b va 0 ni c bilan almashtiring.
x=\frac{-100±100}{2\left(-41666662\right)}
100^{2} ning kvadrat ildizini chiqarish.
x=\frac{-100±100}{-83333324}
2 ni -41666662 marotabaga ko'paytirish.
x=\frac{0}{-83333324}
x=\frac{-100±100}{-83333324} tenglamasini yeching, bunda ± musbat. -100 ni 100 ga qo'shish.
x=0
0 ni -83333324 ga bo'lish.
x=-\frac{200}{-83333324}
x=\frac{-100±100}{-83333324} tenglamasini yeching, bunda ± manfiy. -100 dan 100 ni ayirish.
x=\frac{50}{20833331}
\frac{-200}{-83333324} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=\frac{50}{20833331}
Tenglama yechildi.
0\times 3=100x-41666662x^{2}
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
0=100x-41666662x^{2}
0 hosil qilish uchun 0 va 3 ni ko'paytirish.
100x-41666662x^{2}=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-41666662x^{2}+100x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-41666662x^{2}+100x}{-41666662}=\frac{0}{-41666662}
Ikki tarafini -41666662 ga bo‘ling.
x^{2}+\frac{100}{-41666662}x=\frac{0}{-41666662}
-41666662 ga bo'lish -41666662 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{50}{20833331}x=\frac{0}{-41666662}
\frac{100}{-41666662} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{50}{20833331}x=0
0 ni -41666662 ga bo'lish.
x^{2}-\frac{50}{20833331}x+\left(-\frac{25}{20833331}\right)^{2}=\left(-\frac{25}{20833331}\right)^{2}
-\frac{50}{20833331} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{25}{20833331} olish uchun. Keyin, -\frac{25}{20833331} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{50}{20833331}x+\frac{625}{434027680555561}=\frac{625}{434027680555561}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{25}{20833331} kvadratini chiqarish.
\left(x-\frac{25}{20833331}\right)^{2}=\frac{625}{434027680555561}
x^{2}-\frac{50}{20833331}x+\frac{625}{434027680555561} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{25}{20833331}\right)^{2}}=\sqrt{\frac{625}{434027680555561}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{25}{20833331}=\frac{25}{20833331} x-\frac{25}{20833331}=-\frac{25}{20833331}
Qisqartirish.
x=\frac{50}{20833331} x=0
\frac{25}{20833331} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}