x uchun yechish
x=\frac{2\sqrt{2}}{3}-1\approx -0,057190958
x=-\frac{2\sqrt{2}}{3}-1\approx -1,942809042
Grafik
Baham ko'rish
Klipbordga nusxa olish
0=9\left(x^{2}+2x+1\right)-8
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
0=9x^{2}+18x+9-8
9 ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
0=9x^{2}+18x+1
1 olish uchun 9 dan 8 ni ayirish.
9x^{2}+18x+1=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{-18±\sqrt{18^{2}-4\times 9}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 18 ni b va 1 ni c bilan almashtiring.
x=\frac{-18±\sqrt{324-4\times 9}}{2\times 9}
18 kvadratini chiqarish.
x=\frac{-18±\sqrt{324-36}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-18±\sqrt{288}}{2\times 9}
324 ni -36 ga qo'shish.
x=\frac{-18±12\sqrt{2}}{2\times 9}
288 ning kvadrat ildizini chiqarish.
x=\frac{-18±12\sqrt{2}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{12\sqrt{2}-18}{18}
x=\frac{-18±12\sqrt{2}}{18} tenglamasini yeching, bunda ± musbat. -18 ni 12\sqrt{2} ga qo'shish.
x=\frac{2\sqrt{2}}{3}-1
-18+12\sqrt{2} ni 18 ga bo'lish.
x=\frac{-12\sqrt{2}-18}{18}
x=\frac{-18±12\sqrt{2}}{18} tenglamasini yeching, bunda ± manfiy. -18 dan 12\sqrt{2} ni ayirish.
x=-\frac{2\sqrt{2}}{3}-1
-18-12\sqrt{2} ni 18 ga bo'lish.
x=\frac{2\sqrt{2}}{3}-1 x=-\frac{2\sqrt{2}}{3}-1
Tenglama yechildi.
0=9\left(x^{2}+2x+1\right)-8
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
0=9x^{2}+18x+9-8
9 ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
0=9x^{2}+18x+1
1 olish uchun 9 dan 8 ni ayirish.
9x^{2}+18x+1=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
9x^{2}+18x=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{9x^{2}+18x}{9}=-\frac{1}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\frac{18}{9}x=-\frac{1}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}+2x=-\frac{1}{9}
18 ni 9 ga bo'lish.
x^{2}+2x+1^{2}=-\frac{1}{9}+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=-\frac{1}{9}+1
1 kvadratini chiqarish.
x^{2}+2x+1=\frac{8}{9}
-\frac{1}{9} ni 1 ga qo'shish.
\left(x+1\right)^{2}=\frac{8}{9}
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{8}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\frac{2\sqrt{2}}{3} x+1=-\frac{2\sqrt{2}}{3}
Qisqartirish.
x=\frac{2\sqrt{2}}{3}-1 x=-\frac{2\sqrt{2}}{3}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}