x uchun yechish
x=\frac{5\sqrt{3}}{3}+5\approx 7,886751346
x=-\frac{5\sqrt{3}}{3}+5\approx 2,113248654
Grafik
Baham ko'rish
Klipbordga nusxa olish
60x^{2}-600x+1000=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{-\left(-600\right)±\sqrt{\left(-600\right)^{2}-4\times 60\times 1000}}{2\times 60}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 60 ni a, -600 ni b va 1000 ni c bilan almashtiring.
x=\frac{-\left(-600\right)±\sqrt{360000-4\times 60\times 1000}}{2\times 60}
-600 kvadratini chiqarish.
x=\frac{-\left(-600\right)±\sqrt{360000-240\times 1000}}{2\times 60}
-4 ni 60 marotabaga ko'paytirish.
x=\frac{-\left(-600\right)±\sqrt{360000-240000}}{2\times 60}
-240 ni 1000 marotabaga ko'paytirish.
x=\frac{-\left(-600\right)±\sqrt{120000}}{2\times 60}
360000 ni -240000 ga qo'shish.
x=\frac{-\left(-600\right)±200\sqrt{3}}{2\times 60}
120000 ning kvadrat ildizini chiqarish.
x=\frac{600±200\sqrt{3}}{2\times 60}
-600 ning teskarisi 600 ga teng.
x=\frac{600±200\sqrt{3}}{120}
2 ni 60 marotabaga ko'paytirish.
x=\frac{200\sqrt{3}+600}{120}
x=\frac{600±200\sqrt{3}}{120} tenglamasini yeching, bunda ± musbat. 600 ni 200\sqrt{3} ga qo'shish.
x=\frac{5\sqrt{3}}{3}+5
600+200\sqrt{3} ni 120 ga bo'lish.
x=\frac{600-200\sqrt{3}}{120}
x=\frac{600±200\sqrt{3}}{120} tenglamasini yeching, bunda ± manfiy. 600 dan 200\sqrt{3} ni ayirish.
x=-\frac{5\sqrt{3}}{3}+5
600-200\sqrt{3} ni 120 ga bo'lish.
x=\frac{5\sqrt{3}}{3}+5 x=-\frac{5\sqrt{3}}{3}+5
Tenglama yechildi.
60x^{2}-600x+1000=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
60x^{2}-600x=-1000
Ikkala tarafdan 1000 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{60x^{2}-600x}{60}=-\frac{1000}{60}
Ikki tarafini 60 ga bo‘ling.
x^{2}+\left(-\frac{600}{60}\right)x=-\frac{1000}{60}
60 ga bo'lish 60 ga ko'paytirishni bekor qiladi.
x^{2}-10x=-\frac{1000}{60}
-600 ni 60 ga bo'lish.
x^{2}-10x=-\frac{50}{3}
\frac{-1000}{60} ulushini 20 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-10x+\left(-5\right)^{2}=-\frac{50}{3}+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=-\frac{50}{3}+25
-5 kvadratini chiqarish.
x^{2}-10x+25=\frac{25}{3}
-\frac{50}{3} ni 25 ga qo'shish.
\left(x-5\right)^{2}=\frac{25}{3}
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{\frac{25}{3}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=\frac{5\sqrt{3}}{3} x-5=-\frac{5\sqrt{3}}{3}
Qisqartirish.
x=\frac{5\sqrt{3}}{3}+5 x=-\frac{5\sqrt{3}}{3}+5
5 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}