x uchun yechish
x=\sqrt{5}-5\approx -2,763932023
x=-\sqrt{5}-5\approx -7,236067977
Grafik
Baham ko'rish
Klipbordga nusxa olish
0=\frac{1}{5}\left(x^{2}+10x+25\right)-1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+5\right)^{2} kengaytirilishi uchun ishlating.
0=\frac{1}{5}x^{2}+2x+5-1
\frac{1}{5} ga x^{2}+10x+25 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
0=\frac{1}{5}x^{2}+2x+4
4 olish uchun 5 dan 1 ni ayirish.
\frac{1}{5}x^{2}+2x+4=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{-2±\sqrt{2^{2}-4\times \frac{1}{5}\times 4}}{2\times \frac{1}{5}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{5} ni a, 2 ni b va 4 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\times \frac{1}{5}\times 4}}{2\times \frac{1}{5}}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-\frac{4}{5}\times 4}}{2\times \frac{1}{5}}
-4 ni \frac{1}{5} marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4-\frac{16}{5}}}{2\times \frac{1}{5}}
-\frac{4}{5} ni 4 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{\frac{4}{5}}}{2\times \frac{1}{5}}
4 ni -\frac{16}{5} ga qo'shish.
x=\frac{-2±\frac{2\sqrt{5}}{5}}{2\times \frac{1}{5}}
\frac{4}{5} ning kvadrat ildizini chiqarish.
x=\frac{-2±\frac{2\sqrt{5}}{5}}{\frac{2}{5}}
2 ni \frac{1}{5} marotabaga ko'paytirish.
x=\frac{\frac{2\sqrt{5}}{5}-2}{\frac{2}{5}}
x=\frac{-2±\frac{2\sqrt{5}}{5}}{\frac{2}{5}} tenglamasini yeching, bunda ± musbat. -2 ni \frac{2\sqrt{5}}{5} ga qo'shish.
x=\sqrt{5}-5
-2+\frac{2\sqrt{5}}{5} ni \frac{2}{5} ga bo'lish -2+\frac{2\sqrt{5}}{5} ga k'paytirish \frac{2}{5} ga qaytarish.
x=\frac{-\frac{2\sqrt{5}}{5}-2}{\frac{2}{5}}
x=\frac{-2±\frac{2\sqrt{5}}{5}}{\frac{2}{5}} tenglamasini yeching, bunda ± manfiy. -2 dan \frac{2\sqrt{5}}{5} ni ayirish.
x=-\sqrt{5}-5
-2-\frac{2\sqrt{5}}{5} ni \frac{2}{5} ga bo'lish -2-\frac{2\sqrt{5}}{5} ga k'paytirish \frac{2}{5} ga qaytarish.
x=\sqrt{5}-5 x=-\sqrt{5}-5
Tenglama yechildi.
0=\frac{1}{5}\left(x^{2}+10x+25\right)-1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+5\right)^{2} kengaytirilishi uchun ishlating.
0=\frac{1}{5}x^{2}+2x+5-1
\frac{1}{5} ga x^{2}+10x+25 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
0=\frac{1}{5}x^{2}+2x+4
4 olish uchun 5 dan 1 ni ayirish.
\frac{1}{5}x^{2}+2x+4=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{1}{5}x^{2}+2x=-4
Ikkala tarafdan 4 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{\frac{1}{5}x^{2}+2x}{\frac{1}{5}}=-\frac{4}{\frac{1}{5}}
Ikkala tarafini 5 ga ko‘paytiring.
x^{2}+\frac{2}{\frac{1}{5}}x=-\frac{4}{\frac{1}{5}}
\frac{1}{5} ga bo'lish \frac{1}{5} ga ko'paytirishni bekor qiladi.
x^{2}+10x=-\frac{4}{\frac{1}{5}}
2 ni \frac{1}{5} ga bo'lish 2 ga k'paytirish \frac{1}{5} ga qaytarish.
x^{2}+10x=-20
-4 ni \frac{1}{5} ga bo'lish -4 ga k'paytirish \frac{1}{5} ga qaytarish.
x^{2}+10x+5^{2}=-20+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+10x+25=-20+25
5 kvadratini chiqarish.
x^{2}+10x+25=5
-20 ni 25 ga qo'shish.
\left(x+5\right)^{2}=5
x^{2}+10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5\right)^{2}}=\sqrt{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5=\sqrt{5} x+5=-\sqrt{5}
Qisqartirish.
x=\sqrt{5}-5 x=-\sqrt{5}-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}