x uchun yechish
x = \frac{\sqrt{84441} + 1021}{1000} \approx 1,311587336
x=\frac{1021-\sqrt{84441}}{1000}\approx 0,730412664
Grafik
Baham ko'rish
Klipbordga nusxa olish
0,042\left(x+1\right)=\left(1-x\right)\left(1-x\right)
x qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+1 ga ko'paytirish.
0,042\left(x+1\right)=\left(1-x\right)^{2}
\left(1-x\right)^{2} hosil qilish uchun 1-x va 1-x ni ko'paytirish.
0,042x+0,042=\left(1-x\right)^{2}
0,042 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
0,042x+0,042=1-2x+x^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-x\right)^{2} kengaytirilishi uchun ishlating.
0,042x+0,042-1=-2x+x^{2}
Ikkala tarafdan 1 ni ayirish.
0,042x-0,958=-2x+x^{2}
-0,958 olish uchun 0,042 dan 1 ni ayirish.
0,042x-0,958+2x=x^{2}
2x ni ikki tarafga qo’shing.
2,042x-0,958=x^{2}
2,042x ni olish uchun 0,042x va 2x ni birlashtirish.
2,042x-0,958-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-x^{2}+2,042x-0,958=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2,042±\sqrt{2,042^{2}-4\left(-1\right)\left(-0,958\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 2,042 ni b va -0,958 ni c bilan almashtiring.
x=\frac{-2,042±\sqrt{4,169764-4\left(-1\right)\left(-0,958\right)}}{2\left(-1\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib 2,042 kvadratini chiqarish.
x=\frac{-2,042±\sqrt{4,169764+4\left(-0,958\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-2,042±\sqrt{4,169764-3,832}}{2\left(-1\right)}
4 ni -0,958 marotabaga ko'paytirish.
x=\frac{-2,042±\sqrt{0,337764}}{2\left(-1\right)}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali 4,169764 ni -3,832 ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-2,042±\frac{\sqrt{84441}}{500}}{2\left(-1\right)}
0,337764 ning kvadrat ildizini chiqarish.
x=\frac{-2,042±\frac{\sqrt{84441}}{500}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{84441}-1021}{-2\times 500}
x=\frac{-2,042±\frac{\sqrt{84441}}{500}}{-2} tenglamasini yeching, bunda ± musbat. -2,042 ni \frac{\sqrt{84441}}{500} ga qo'shish.
x=\frac{1021-\sqrt{84441}}{1000}
\frac{-1021+\sqrt{84441}}{500} ni -2 ga bo'lish.
x=\frac{-\sqrt{84441}-1021}{-2\times 500}
x=\frac{-2,042±\frac{\sqrt{84441}}{500}}{-2} tenglamasini yeching, bunda ± manfiy. -2,042 dan \frac{\sqrt{84441}}{500} ni ayirish.
x=\frac{\sqrt{84441}+1021}{1000}
\frac{-1021-\sqrt{84441}}{500} ni -2 ga bo'lish.
x=\frac{1021-\sqrt{84441}}{1000} x=\frac{\sqrt{84441}+1021}{1000}
Tenglama yechildi.
0.042\left(x+1\right)=\left(1-x\right)\left(1-x\right)
x qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+1 ga ko'paytirish.
0.042\left(x+1\right)=\left(1-x\right)^{2}
\left(1-x\right)^{2} hosil qilish uchun 1-x va 1-x ni ko'paytirish.
0.042x+0.042=\left(1-x\right)^{2}
0.042 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
0.042x+0.042=1-2x+x^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-x\right)^{2} kengaytirilishi uchun ishlating.
0.042x+0.042+2x=1+x^{2}
2x ni ikki tarafga qo’shing.
2.042x+0.042=1+x^{2}
2.042x ni olish uchun 0.042x va 2x ni birlashtirish.
2.042x+0.042-x^{2}=1
Ikkala tarafdan x^{2} ni ayirish.
2.042x-x^{2}=1-0.042
Ikkala tarafdan 0.042 ni ayirish.
2.042x-x^{2}=0.958
0.958 olish uchun 1 dan 0.042 ni ayirish.
-x^{2}+2.042x=0.958
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+2.042x}{-1}=\frac{0.958}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{2.042}{-1}x=\frac{0.958}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-2.042x=\frac{0.958}{-1}
2.042 ni -1 ga bo'lish.
x^{2}-2.042x=-0.958
0.958 ni -1 ga bo'lish.
x^{2}-2.042x+\left(-1.021\right)^{2}=-0.958+\left(-1.021\right)^{2}
-2.042 ni bo‘lish, x shartining koeffitsienti, 2 ga -1.021 olish uchun. Keyin, -1.021 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2.042x+1.042441=-0.958+1.042441
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -1.021 kvadratini chiqarish.
x^{2}-2.042x+1.042441=0.084441
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -0.958 ni 1.042441 ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-1.021\right)^{2}=0.084441
x^{2}-2.042x+1.042441 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1.021\right)^{2}}=\sqrt{0.084441}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1.021=\frac{\sqrt{84441}}{1000} x-1.021=-\frac{\sqrt{84441}}{1000}
Qisqartirish.
x=\frac{\sqrt{84441}+1021}{1000} x=\frac{1021-\sqrt{84441}}{1000}
1.021 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}