x uchun yechish
x=200\sqrt{673}-5000\approx 188,448708429
x=-200\sqrt{673}-5000\approx -10188,448708429
Grafik
Baham ko'rish
Klipbordga nusxa olish
0,0001x^{2}+x-192=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1^{2}-4\times 0,0001\left(-192\right)}}{2\times 0,0001}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 0,0001 ni a, 1 ni b va -192 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\times 0,0001\left(-192\right)}}{2\times 0,0001}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-0,0004\left(-192\right)}}{2\times 0,0001}
-4 ni 0,0001 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1+0,0768}}{2\times 0,0001}
-0,0004 ni -192 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1,0768}}{2\times 0,0001}
1 ni 0,0768 ga qo'shish.
x=\frac{-1±\frac{\sqrt{673}}{25}}{2\times 0,0001}
1,0768 ning kvadrat ildizini chiqarish.
x=\frac{-1±\frac{\sqrt{673}}{25}}{0,0002}
2 ni 0,0001 marotabaga ko'paytirish.
x=\frac{\frac{\sqrt{673}}{25}-1}{0,0002}
x=\frac{-1±\frac{\sqrt{673}}{25}}{0,0002} tenglamasini yeching, bunda ± musbat. -1 ni \frac{\sqrt{673}}{25} ga qo'shish.
x=200\sqrt{673}-5000
-1+\frac{\sqrt{673}}{25} ni 0,0002 ga bo'lish -1+\frac{\sqrt{673}}{25} ga k'paytirish 0,0002 ga qaytarish.
x=\frac{-\frac{\sqrt{673}}{25}-1}{0,0002}
x=\frac{-1±\frac{\sqrt{673}}{25}}{0,0002} tenglamasini yeching, bunda ± manfiy. -1 dan \frac{\sqrt{673}}{25} ni ayirish.
x=-200\sqrt{673}-5000
-1-\frac{\sqrt{673}}{25} ni 0,0002 ga bo'lish -1-\frac{\sqrt{673}}{25} ga k'paytirish 0,0002 ga qaytarish.
x=200\sqrt{673}-5000 x=-200\sqrt{673}-5000
Tenglama yechildi.
0.0001x^{2}+x-192=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
0.0001x^{2}+x-192-\left(-192\right)=-\left(-192\right)
192 ni tenglamaning ikkala tarafiga qo'shish.
0.0001x^{2}+x=-\left(-192\right)
O‘zidan -192 ayirilsa 0 qoladi.
0.0001x^{2}+x=192
0 dan -192 ni ayirish.
\frac{0.0001x^{2}+x}{0.0001}=\frac{192}{0.0001}
Ikkala tarafini 10000 ga ko‘paytiring.
x^{2}+\frac{1}{0.0001}x=\frac{192}{0.0001}
0.0001 ga bo'lish 0.0001 ga ko'paytirishni bekor qiladi.
x^{2}+10000x=\frac{192}{0.0001}
1 ni 0.0001 ga bo'lish 1 ga k'paytirish 0.0001 ga qaytarish.
x^{2}+10000x=1920000
192 ni 0.0001 ga bo'lish 192 ga k'paytirish 0.0001 ga qaytarish.
x^{2}+10000x+5000^{2}=1920000+5000^{2}
10000 ni bo‘lish, x shartining koeffitsienti, 2 ga 5000 olish uchun. Keyin, 5000 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+10000x+25000000=1920000+25000000
5000 kvadratini chiqarish.
x^{2}+10000x+25000000=26920000
1920000 ni 25000000 ga qo'shish.
\left(x+5000\right)^{2}=26920000
x^{2}+10000x+25000000 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5000\right)^{2}}=\sqrt{26920000}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5000=200\sqrt{673} x+5000=-200\sqrt{673}
Qisqartirish.
x=200\sqrt{673}-5000 x=-200\sqrt{673}-5000
Tenglamaning ikkala tarafidan 5000 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}